- 109.00 KB
- 2021-06-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
(三) 数列中的高考热点问题
(对应学生用书第90页)
[命题解读] 数列在中学数学中既具有独立性,又具有较强的综合性,是初等数学与高等数学的一个重要衔接点,从近五年全国卷高考试题来看,本专题的热点题型有:一是等差、等比数列的综合问题;二是数列的通项与求和;三是数列与函数、不等式的交汇,难度中等.
等差、等比数列的综合问题
解决等差、等比数列的综合问题,关键是理清两种数列的项之间的关系,并注重方程思想的应用,等差(比)数列共涉及五个量a1,an,Sn,d(q),n,“知三求二”.
已知等差数列{an},公差d=2,S1,S2,S4成等比数列.
(1)求an;
(2)令bn=(-1)n,求{bn}的前n项和Tn.
[解] (1)∵S1,S2,S4成等比数列.
∴S=S1S4,
∴(2a1+2)2=a1
解得a1=1,
∴an=1+2(n-1)=2n-1.
(2)bn=(-1)n·
=(-1)n·
=(-1)n.
∴当n为偶数时,{bn}的前n项和Tn=-+-…+
=-1+=,
当n为奇数时,{bn}的前n项和Tn=-+-…-
=-1-=-.
故Tn=
[规律方法] 1.若{an}是等差数列,则{ban}(b>0,且b≠1)是等比数列;若{an}是正项等比数列,则{logban}(b>0,且b≠1)是等差数列.
2.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系,以便实现等差、等比数列之间的相互转化.
[跟踪训练] 已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(1)求数列{an}的通项公式;
(2)设a1>0,λ=100.当n为何值时,数列的前n项和最大?
[解] (1)取n=1,得λa=2S1=2a1,a1(λa1-2)=0.
若a1=0,则Sn=0.
当n≥2时,an=Sn-Sn-1=0-0=0,
所以an=0(n≥1).
若a1≠0,则a1=.
当n≥2时,2an=+Sn,2an-1=+Sn-1,
两式相减得2an-2an-1=an,
所以an=2an-1(n≥2),从而数列{an}是等比数列,
所以an=a1·2n-1=·2n-1=.
综上,当a1=0时,an=0;当a1≠0时,an=.
(2)当a1>0,且λ=100时,令bn=lg,
由(1)知,bn=lg=2-nlg 2.
所以数列{bn}是单调递减的等差数列,公差为-lg 2.
b1>b2>…>b6=lg=lg>lg 1=0,
当n≥7时,bn≤b7=lg=lg==,
所以Tn>×××…×=.
综上可得,对任意的n∈N+,均有Tn≥.