• 520.00 KB
  • 2021-06-10 发布

【数学】2019届一轮复习北师大版充分必要条件学案

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ 2019年高考数学总复习 ‎ ‎ ‎ 命题及其关系、充分条件与必要条件 考点一.四种命题的关系及真假判断 ‎1. 以下关于命题的说法正确的有________ (填写所有正确命题的序号).‎ ‎ ①“若log2a>0,则函数f(x)=logax (a>0,a≠1)在其定义域内是减函数”是真命题;‎ ‎ ②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;‎ ‎ ③命题“若x, y都是偶数,则x+y也是偶数”的逆命题为真命题;[ om]‎ ‎ ④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.‎ 解 对于①,若log2a>0,则a>1 Þf(x)=logax在其定义域内是增函数;‎ 对于③,其逆命题是“若x+y是偶数,则x, y都是偶数”, 是假命题.所以选②④‎ 考点二.充分、必要、充要条件的概念与判断 1. 与集合 ‎(1)非空集合A、B中,p x∈A∪B,q x∈B;则p是q____________ 条件.‎ 解 x∈A∪B不一定有x∈B ,但x∈B一定有x∈A∪B ,所以p是q的必要不充分条件.‎ ‎ (2)设集合,,则“”是“”的_必要不充分 条件.‎ 必要不充分 ‎ (3)设集合,,则“”是“”的_____________条件.‎ ‎2.与方程 ‎(1)已知x、y∈R,p (x-1)2+(y-2)2=0, q (x-1)(y-2)=0,则p是q的 条件 解 条件p x=1且y=2,条件q x=1或y=2,故p是q的充分不必要条件.‎ ‎3.与不等式 ‎(1)已知,,那么是的_____充分不必要___条件.‎ ‎(2)已知p 1<x<2,q x(x-3)<0,则p是q的 条件.(充分不必要)‎ ‎(3)是的___________________条件;[来 解 因为的解集为,的解集为 ‎,故是必要不充分条件.‎ ‎(4)对于实数x、y,p x+y≠8,q x≠2或y≠6;则p是q的 条件。‎ 解 Øp x+y=8,Ø q x=2且y=6,显然Ø q ÞØp,即Ø q是 Øp的充分不必要条件,所以p是q的充分不必要条件. ‎ ‎(5)已知,,那么是的____必要不充分___条件.‎ ‎4.与解三角形 ‎(1)在△ABC中,p ∠A=∠B,q sin A=sin B,则p是q的 条件。‎ 解 ,∴p是q的充要条件.‎ ‎(2)p sinA>0,q A为第一,二象限角,则p是q的 条件。‎ 解 p A为第一,二象限角以及y轴正半轴,则p是q的必要不充分条件。‎ ‎5.与几何 ‎(1)已知两直线平行,内错角相等,那么是的____充要_____条件.‎ ‎(2)已知四边形的四条边相等,四边形是正方形,那么是的_____必要不充分___条件.‎ ‎6.与函数 ‎(1)设,是定义在R上的函数,,则“,均为偶函数”是“为偶函数”的充分不必要______条件.‎ 解 q 偶+偶=偶或则,故p是q的充分不必要条件。‎ ‎7.抽象命题 ‎(1)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则p是s的_________条件.‎ s 解 ‎ 故p是s的的必要不充分条件. ‎ ‎(2)已知是的充分条件而不是必要条件,是的充分条件,是的必要条件,是的必要条件。现有下列命题 ①是的充要条件;②是的充分条件而不是必要条件;‎ ‎③是的必要条件而不是充分条件; ④的必要条件而不是充分条件;⑤是的充分条件而不是必要条件,‎ 其中正确命题序号是______①②④____.‎ 考点三。求充分必要条件 ‎3.(1)已知P ,求非p是非q什么条件?‎ 解 p 解不等式,则非p ,故为充分不必要条件。‎ ‎(2)已知关于x的方程,.‎ 求 (1)方程有两个正根的充要条件; (2)方程至少有一个正根的充要条件.‎ 解 (1)方程有两个正根的充要条件设此时方程的两实根为,,则,的正数的充要条件是.‎ 综上,方程有两个正根的充要条件为或.‎ ‎(2)①方程有两个正根,由(1)知或.‎ ②当时,方程化为,有一个正根.‎ ③方程无零根,故方程有一正根,一负根的充要条件是即.‎ 综上,方程至少有一正根的充要条件是或.‎ 考点四 充分必要条件求参数取值范围 4. ‎(1)已知p 4x+m<0,q ,若p是q的充分不必要条件,求m取值范围。‎ 解 p ,则。‎ ‎(2)已知p ,,若是的必要不充分条件,求m的取值范围.‎ 解 由题知 ,‎ 是的必要不充分条件,是的必要不充分条件.‎ ‎,即得.故m的取值范围为.‎ ‎(3)已知p ,求m的取值范围。‎ 解 p x<-2或x>10,q x<-m-1或x>m-1,则。‎ 考点五.充要条件的证明 ‎(1)已知函数,求证 函数是偶函数的充要条件为.‎ 证明 充分性 定义域关于原点对称.‎ ‎,, ,‎ 所以,所以为偶函数.‎ 必要性 因为是偶函数,则对任意x有,‎ 得,即,所以.‎ 综上所述,原命题得证.‎ ‎(2)求证 关于x的方程有一个根为-1的充要条件是.‎ 证明 必要性 若是方程的根,求证 .‎ 是方程的根,,即.‎ 充分性 关于x的方程的系数满足,求证 方程有一根为-1.‎ ‎,,代入方程得 ,‎ 得,是方程的一个根.‎ 故原命题成立.‎ ‎ ‎