- 741.50 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一、考情分析
函数与方程、函数与不等式都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与方程、函数与不等式是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数与方程、函数与不等式思想的运用是我们解决问题的重要手段.
二、经验分享
(1) 确定函数零点所在区间,可利用零点存在性定理或数形结合法.
(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.
(3) 已知函数零点情况求参数的步骤
①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式(组);③解不等式(组),即得参数的取值范围.
(4)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围.
(5)“a=f(x)有解”型问题,可以通过求函数y=f(x)的值域解决.
三、知识拓展
1.有关函数零点的结论
(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.
(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.
(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.
2.三个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
四、题型分析
(一) 函数与方程关系的应用
函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y
=0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.
【例1】已知函数()有四个不同的零点,则实数的取值范围是
【分析】把函数()有四个不同的零点转化为方程有三个不同的根,再利用函数图象求解
【解析】因为是函数的零点,则函数有四个不同的零点,等价于方程有三个不同的根,即方程有三个不同的根.记函数=.由题意y=与有三个不同的交点,由图知,所以.实数的取值范围是是、
【点评】零点问题也可转化为方程的根的问题,的根的个数问题,可以转化为函数和图象交点的个数问题,通过在直角坐标系中作出两个函数图象,从而确定交点的个数,也就是方程根的个数.
【小试牛刀】【2018届2江苏徐州丰县高三上学期调考】.设函数(,为自然对数的底数),若曲线上存在一点使得,则的取值范围是 .
【答案】
【解析】由题设及函数的解析式可知,所以.由题意问题转化为“存在,使得有解”,即在有解,令,则,当时,函数是增函数;所以,当,即.所以,故应填答案.
(二) 函数与不等式关系的应用
函数与不等式都是高中数学的重要内容,也都是高考的重点,在每年的高考试题中这部分内容所占的比例都是很大的.函数是高中数学的主线,方程与不等式则是它的重要组成部分.在很多情况下函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而同时研究函数的性质,也离不开解不等式的应用.
【例2】已知函数, ,若对任意的,都有成立,则实数的取值范围为 .
【分析】根据题中条件:对任意的,都有成立,将问题转化为.再由题中所给两函数的特征:函数是一确定的分段函数,由它的图象不难求出函数的最大值;而另一个函数中含有绝对值,由含有绝对值的不等式可求出它的最小值,即可得到不等式,则可求出的取值范围.
【解析】对任意的,都有成立,即.观察的图象可知,当时,函数;因为,所以所以,,解得或,故答案为或.
【点评】本题考查了分段函数、对数函数和二次函数的性质,主要考察了不等式的恒成立问题和函数的最值问题. 注意不等式: 对是恒成立的.特别要注意等号成立的条件. 渗透到方程问题、不等式问题、和某些代数问题都可以转化为函数知识.且涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,它们是高考中考查的重点,所以在教学中我们应引引起高度的重视.
【小试牛刀】【2018届江苏省南京市高三12月联考】若不等式对任意的恒成立,则实数x的取值集合为________.
【答案】
【解析】画图可知,函数和函数连续在轴右边有相同的零点,令,得,代入中,得,或,注意到,所以实数的取值集合为,故填.
(三) 函数、方程和不等式关系的应用
函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念.也体现了函数图像与方程、不等式的内在联系,在高中阶段,应该让学生进一步深刻认识和体会函数、方程、不等式三部分之间的内在联系,并把这种内在联系作为学习的基本指导思想,这也是高中数学最为重要的内容之一.而新课程标准中把这个联系提到了十分明朗、鲜明的程度.因此,在高三的复习中,对这部分内容应予以足够的重视.
【例3】已知函数,其中m,a均为实数.
(1)求的极值;
(2)设,若对任意的,恒成立,求的最小值;
(3)设,若对任意给定的,在区间上总存在,使得成立,求的取值范围.
【分析】(1)求的极值,就是先求出,解方程,此方程的解把函数的定义域分成若干个区间,我们再确定在每个区间里的符号,从而得出极大值或极小值;(2)此总是首先是对不等式恒成立的转化,由(1)可确定在上是增函数,同样的方法(导数法)可确定函数在上也是增函数,不妨设,这样题设绝对值不等式可变为
,整理为,由此函数在区间上为减函数,则在(3,4)上恒成立,要求的取值范围.采取分离参数法得恒成立,于是问题转化为求在上的最大值;(3)由于的任意性,我们可先求出在上的值域,题设“在区间上总存在,使得
成立”,转化为函数在区间上不是单调函数,极值点为(),其次,极小值,最后还要证明在上,存在,使,由此可求出的范围.
【解析】(1),令,得x = 1.
列表如下:
x
(-∞,1)
1
(1,+∞)
+
0
-
g(x)
↗
极大值
↘
∵g(1) = 1,∴y =的极大值为1,无极小值.
(2)当时, ,.
∵在恒成立,∴在上为增函数.
设,∵> 0在恒成立,
∴在上为增函数.
设,则等价于,
即.
设,则u(x)在为减函数.
∴在(3,4)上恒成立.
∴恒成立.
设,∵=,xÎ[3,4],
∴,∴< 0,为减函数.
∴在[3,4]上的最大值为v(3) = 3 -.
∴a≥3 -,∴的最小值为3 -.
(3)由(1)知在上的值域为.
∵,,
当时,在为减函数,不合题意.
当时, ,由题意知在不单调,
所以,即.①
此时在上递减,在上递增,
∴,即,解得.②
由①②,得.
∵,∴成立.
下证存在,使得≥1.
取,先证,即证.③
设,则在时恒成立.
∴在时为增函数.∴,∴③成立.
再证≥1.
∵,∴时,命题成立.
综上所述,的取值范围为.
【点评】本题主要考查了导数的应用,求单调区间,极值,求函数的值域,以及不等式恒成立等函数的综合应用. 对于不等式的解法要熟练地掌握其基本思想,在运算过程中要细心,不可出现计算上的错误.解决不等式与函数、方程之间联系的题目时不仅要理解其内在的联系,还应注意转化的思想和数形结合的思想应用. 有关恒成立问题、能成立问题、恰好成立问题在新课标高考试题中经常出现,要理解各自的区别.在求函数在闭区间上的最值问题可采用以下方法:先求出函数在导数为零的点、不可导点、闭区间的端点的函数值,然后进行比较,最大的函数值就是函数的最大值,最小的函数值就是函数的最小值.
【小试牛刀】【江苏省常州市2019届高三上学期期末】已知函数,函数.
(1)若,求曲线在点处的切线方程;
(2)若函数有且只有一个零点,求实数的取值范围;
(3)若函数对恒成立,求实数的取值范围.(是自然对数的底数,)
【解析】
(1)当时,,则,所以,
所以切线方程为.
(2),
①当时,恒成立,所以单调递增,
因为,所以有唯一零点,即符合题意;
②当时,令,解得,列表如下:
-
0
+
极小值
由表可知,.
(i)当,即时,,所以符合题意;
(ii)当,即时,,
因为,且,所以,
故存在,使得,所以不符题意;
(iii)当,即时,,
因为,
设,
则,
所以单调递增,即,所以,
又因为,所以,
故存在,使得,所以不符题意;
综上,的取值范围为.
(3),则,
①当时,恒成立,所以单调递增,
所以,即符合题意;
②当时,恒成立,所以单调递增,
又因为
,
所以存在,使得,
且当时,,即在上单调递减,
所以,即不符题意;
综上,的取值范围为.