- 1.01 MB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2020届一轮复习北师大版 空间几何体 作业
一、选择题(每小题3分,共18分)
1.如图所示,观察四个几何体,其中判断正确的是( )
A.(1)是棱台
B.(2)是圆台
C.(3)是棱锥
D.(4)不是棱柱
【解析】选C.图(1)不是由棱锥截来的,所以(1)不是棱台;图(2)上、下两个面不平行,所以(2)不是圆台;图(3)是棱锥.图(4)前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以(4)是棱柱.
【补偿训练】下列说法正确的是 ( )
A.棱柱的侧面可以是三角形
B.正方体和长方体都是特殊的四棱柱
C.所有的几何体的表面都能展成平面图形
D.棱柱的各条棱都相等
【解析】选B.棱柱的侧棱都相等,侧面是平行四边形,球的表面不能展成平面图形,故选B.
2.(2018·四川双流中学模拟)《算数书》是我国现存最早的有系统的数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2
h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为 ( )
A. B.
C. D.
【解析】选B.设圆锥底面积的半径为r,高为h,则L=2πr,πr2h=(2πr)2h,
所以π=.
3.(2018·九江检测)棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1∶2,则此棱锥的高被分成的两段之比为 ( )
A.1∶2
B.1∶4
C.1∶(+1)
D.1∶(-1)
【解析】选D.借助轴截面,利用相似的性质,若截面面积与底面面积之比为
1∶2,则对应小棱锥与原棱锥高之比为1∶,被截面分成两段之比为
1∶(-1).
【误区警示】求解本题常因搞错比例关系出错.
4.(2018·渭南检测)如图所示为一个简单几何体的三视图,则其对应的实物是 ( )
【解析】选A.根据三种视图的对角线位置关系,容易判断A是正确结论.
【补偿训练】如图是长和宽分别相等的两个矩形.给定下列三个命题:
①存在三棱柱,其正(主)视图、俯视图如图所示;
②存在四棱柱,其正(主)视图、俯视图如图所示;
③存在圆柱,其正(主)视图、俯视图如图所示.
其中真命题的个数是( )
A.3 B.2 C.1 D.0
【解析】选A.如图①②③所示的正(主)视图和俯视图与题图相同.
所以题中的3个命题均是真命题.
5.(2018·荆州检测)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( )
A.V18>>2π,
所以V2,
所以从E到F的最短路径的长为.
11.(2018·安阳检测)已知一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱.
(1)求圆柱的侧面积.
(2)x为何值时,圆柱的侧面积最大?
【解析】(1)设圆柱的底面半径为r,则它的侧面积为S=2πrx,=,
解得:r=R-x,
所以S圆柱侧=2πRx-x2.
(2)由(1)知:
S圆柱侧=2πRx-x2,在此表达式中,S圆柱侧为x的二次函数,因此,当x=时,圆柱的侧面积最大.
【补偿训练】1.轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm,求球的体积.
【解析】如图作出轴截面,因为△ABC是正三角形,
所以CD=AC.
因为CD=1 cm,
所以AC=2 cm,AD=cm.
因为Rt△AOE∽Rt△ACD,
所以=.
设OE=R,则AO=-R,
所以=,
所以R=cm,
所以V球=π×=π(cm3).
2.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.
【解析】把长方体的部分面展开,如图,有三种情况.
对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为,,,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为.
相关文档
- 高考数学一轮复习核心素养测评五十2021-06-103页
- 2021版高考数学一轮复习核心素养测2021-06-107页
- 【数学】2020一轮复习北师大版(理)562021-06-104页
- 【数学】2020届一轮复习(文)北师大版2021-06-1016页
- 高考数学一轮复习第九章立体几何9-2021-06-1010页
- 2021版高考文科数学(北师大版)一轮复2021-06-1037页
- 【数学】2019届一轮复习北师大版数2021-06-1021页
- 【数学】2020届一轮复习北师大版 2021-06-108页
- 【数学】2020届一轮复习北师大版平2021-06-106页
- 【数学】2019届一轮复习北师大版 2021-06-1012页