- 1.21 MB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题三 数列
第一讲 等差数列、等比数列
高考导航
对等差、等比数列基本量的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程组求解.
2.对等差、等比数列性质的考查主要以客观题出现,具有“新、巧、活”的特点,考查利用性质解决有关计算问题.
3.对等差、等比数列的判断与证明,主要出现在解答题的第一问,是为求数列的通项公式而准备的,因此是解决问题的关键环节.
1.(2016·全国卷Ⅰ)已知等差数列{an}前9项的和为27,a10=8,则a100=( )
A.100 B.99 C.98 D.97
[解析] 设{an}的公差为d,由等差数列前n项和公式及通项公式,得解得an=a1+(n-1)d=n-2,∴a100=100-2=98.故选C.
[答案] C
2.(2017·全国卷Ⅲ)等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为( )
A.-24 B.-3 C.3 D.8
[解析] 设等差数列{an}的公差为d,依题意得a=a2·a6,即(1+2d)2=(1+d)(1+5d),解得d=-2或d=0(舍去),又a1=1,∴S6=6×1+×(-2)=-24.故选A.
[答案] A
3.(2016·浙江卷)设数列{an}的前n项和为Sn,若S2=4,an+1=2Sn+1,n∈N*,则a1=________,S5=________.
[解析] ∵an+1=2Sn+1,∴a2=2S1+1,即S2-a1=2a1+1,又∵S2=4,∴4-a1=2a1+1,解得a1=1.
又an+1=Sn+1-Sn,
∴Sn+1-Sn=2Sn+1.
解法一:Sn+1=3Sn+1,由S2=4,可求出S3=13,S4=40,S5=121.
解法二:Sn+1=3Sn+1,则Sn+1+=3.又S1+=,∴是首项为,公比为3的等比数列,
∴Sn+=×3n-1,即Sn=,
∴S5==121.
[答案] 1 121
4.(2017·绵阳三诊)已知{an}是各项都为正数的数列,其前n项和为Sn,且Sn为an与的等差中项.
(1)求证:数列{S}为等差数列;
(2)设bn=,求{bn}的前n项和Tn.
[解析] (1)证明:由题意知2Sn=an+,
即2Snan-a=1.①
当n=1时,由①式可得S1=1;
当n≥2时,an=Sn-Sn-1,代入①式得
2Sn(Sn-Sn-1)-(Sn-Sn-1)2=1,
整理得S-S=1.
∴{S}是首项为1,公差为1的等差数列.
(2)由(1)知S=n,则Sn=,
∴an=Sn-Sn-1=-.
∴bn===(-1)n(+).
当n为奇数时,Tn=-1+(+1)-(+)+…+(+)-(+)=-;
当n为偶数时,Tn=-1+(+1)-(+)+…-(+)+(+)=.
∴{bn}的前n项和Tn=(-1)n.
考点一 等差、等比数列的基本运算
1.等差数列的通项公式及前n项和公式
an=a1+(n-1)d;
Sn==na1+d.
2.等比数列的通项公式及前n项和公式
an=a1qn-1(q≠0);
Sn=
[对点训练]
1.(2017·全国卷Ⅰ)记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )
A.1 B.2 C.4 D.8
[解析] 等差数列{an}中,S6==48,则a1+a6=16=a2+a5,
又a4+a5=24,所以a4-a2=2d=24-16=8,
得d=4,故选C.
[答案] C
2.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏 C.5盏 D.9盏
[解析] 由题意可知,由上到下灯的盏数a1,a2,a3,…,a7构成以2为公比的等比数列,∴S7==381,∴a1=3.故选B.
[答案] B
3.(2017·湖北省武汉市武昌区高三调研)设公比为q(q>0)的等比数列{an}的前n项和为Sn.若S2=3a2+2,S4=3a4+2,则a1=( )
A.-2 B.-1 C. D.
[解析] 由S2=3a2+2,S4=3a4+2得a3+a4=3a4-3a2,即q+q2=3q2-3,解得q=-1(舍)或q=,将q=代入S2=3a2+2中得a1+a1=3×a1+2,解得a1=-1,故选B.
[答案] B
4.(2017·东北三校联考)已知等差数列{an}满足a2=3,a5=9,若数列{bn}满足b1=3,bn+1=abn,则{bn}的通项公式为________.
[解析] 由题意可得等差数列{an}的公差d==2,所以an=a2+(n-2)d=2n-1,则bn+1=abn=2bn-1,bn+1-1=2(bn-1),又因为b1-1=2,所以数列{bn-1}是首项为2、公比为2的等比数列,所以bn-1=2n,bn=2n+1.
[答案] bn=2n+1
等差(比)数列的运算注意两点
(1)在等差(比)数列中,首项a1和公差d(公比q)是两个最基本的元素.
(2)在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.
【易错提醒】 等比数列前n项和公式中若不确定q是否等于1应分q=1或q≠1两种情况讨论.
考点二 等差、等比数列的性质
[对点训练]
1.(2017·广州六校联考)已知等差数列{an}中,a7+a9=16,S11=,则a12的值是( )
A.15 B.30 C.31 D.64
[解析] 因为a7+a9=2a8=16,所以a8=8.
因为S11===11a6=,所以a6=,则d==,所以a12=a8+4d=15,故选A.
[答案] A
2.(2017·太原模拟)已知等比数列{an}满足a1=,a3a5=4(a4-1),则a2=( )
A.2 B.1 C. D.
[解析] 由等比数列的性质,得a3a5=a=4(a4-1),
解得a4=2.又a1=,所以q3==8,即q=2,
故a2=a1q=×2=.
[答案] C
3.(2017·合肥模拟)设等比数列{an}的前n项和为Sn,若S5=1,S10=3,则S15的值是________.
[解析] ∵数列{an}是等比数列,∴S5,S10-S5,S15-S10成等比数列,∴(S10-S5)2=S5·(S15-S10),4=1×(S15-3),得S15=7.
[答案] 7
[探究追问] 3题中条件不变,如何求S100的值?
[解析] 在等比数列{an}中,S5,S10-S5,S15-S10,…成等比数列,因为S5=1,S10=3,所以S100可表示为等比数列1,2,4,…的前20项和,故S100==220-1.
[答案] 220-1
等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.
考点三 等差、等比数列的判定与证明
1.证明数列{an}是等差数列的两种基本方法
(1)利用定义,证明an+1-an(n∈N*)为一常数;
(2)利用等差中项,即证明2an=an-1+an+1(n≥2).
2.证明数列{an}是等比数列的两种基本方法
(1)利用定义,证明(n∈N*)为一常数;
(2)利用等比中项,即证明a=an-1an+1(n≥2).
[解] (1)证明:由a1=1,及Sn+1=4an+2,
有a1+a2=4a1+2,a2=3a1+2=5,
∴b1=a2-2a1=3.
由Sn+1=4an+2①
知当n≥2时,有Sn=4an-1+2②
①-②得an+1=4an-4an-1,
∴an+1-2an=2(an-2an-1)
又∵bn=an+1-2an,∴bn=2bn-1,
∴{bn}是首项b1=3,公比为2的等比数列.
(2)由(1)可得bn=an+1-2an=3·2n-1,
∴-=,
∴数列是首项为,公差为的等差数列.
∴=+(n-1)×=n-,
an=(3n-1)·2n-2.
等差、等比数列的判定与证明应注意的两点
(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n
项和公式,但不能作为证明方法.
(2)=q和a=an-1an+1(n≥2)都是数列{an}为等比数列的必要不充分条件,判断时还要看各项是否为零.
[对点训练]
若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
[解] (1)证明:当n≥2时,由an+2SnSn-1=0,
得Sn-Sn-1=-2SnSn-1,所以-=2,
又==2,故是首项为2,公差为2的等差数列.
(2)由(1)可得=2n,∴Sn=,
当n≥2时,an=Sn-Sn-1=-
==-.
当n=1时,a1=不适合上式.
故an=
热点课题11 函数与方程思想在数列中的应用
[感悟体验]
1.(2017·西安统测)已知等差数列{an}的前n项和为Sn,a1=13,S3=S11,则Sn的最大值为( )
A.49 B.28
C.-49或-28 D.28或49
[解析] 由S3=S11,可得3a1+3d=11a1+55d,把a1=13代入得d=-2,故Sn=13n-n(n-1)=-n2+14n,根据二次函数性质,知当n=7时,Sn最大,且最大值为49.
[答案] A
2.(2017·河南郑州二中期末)已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}的前n项的和,则(n∈N*)的最小值为( )
A.4 B.3 C.2-2 D.
[解析] ∵a1=1,a1、a3、a13成等比数列,
∴(1+2d)2=1+12d.得d=2或d=0(舍去)
∴an=2n-1,
∴Sn==n2,
∴=.令t=n+1,
则=t+-2≥6-2=4当且仅当t=3,
即n=2时,∴的最小值为4.故选A.
[答案] A