- 216.00 KB
- 2021-06-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1讲 直线与圆
限时40分钟 满分80分
一、选择题(本大题共11小题,每小题5分,共55分)
1.(2020·成都二诊)设a,b,c分别是△ABC中角A,B,C所对的边,则直线sin A·x+ay-c=0与bx-sin B·y+sin C=0的位置关系是( )
A.平行 B.重合
C.垂直 D.相交但不垂直
解析:C [由题意可得直线sin A·x+ay-c=0的斜率k1=-,bx-sin B·y+sin C=0的斜率k2=,故k1k2=-·=-1,则直线sin A·x+ay-c=0与直线bx-sin B·y+sin C=0垂直,故选C.]
2.(2020·杭州质检)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )
A.-或- B.-或-
C.-或- D.-或-
解析:D [点(-2,-3)关于y轴的对称点为(2,-3),故可设反射光线所在直线的方程为y+3=k(x-2),∵反射光线与圆(x+3)2+(y-2)2=1相切,∴圆心(-3,2)到直线的距离d==1,化简得12k2+25k+12=0,解得k=-或-.]
3.(2020·广州模拟)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离的最小值为( )
A. B.2
C.3 D.4
解析:C [由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离都相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.设点M所在直线的方程为l:x+y+m=0,根据两平行线间的距离公式得,=,即|m+7|=|m+5|,所以m=-6,即l:x+y-6=0,根据点到直线的距离公式,得点M到原点的距离的最小值为=3.]
4.(2020·河南六校联考)已知直线x+y=a与圆x2+y2=1交于A,B两点,O
- 6 -
是坐标原点,向量,满足|+|=|-|,则实数a的值为( )
A.1 B.2
C.±1 D.±2
解析:C [由,满足|+|=|-|,得⊥,
因为直线x+y=a的斜率是-1,
所以A,B两点在坐标轴上并且在圆上;
所以(0,1)和(0,-1)两点都适合直线的方程,故a=±1.]
5.(2020·怀柔调研)过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB所在直线的方程为( )
A.y=- B.y=-
C.y=- D.y=-
解析:B [圆(x-1)2+y2=1的圆心为C(1,0),半径为1,以|PC|==2为直径的圆的方程为(x-1)2+(y+1)2=1,将两圆的方程相减得AB所在直线的方程为2y+1=0,即y=-.故选B.]
6.(2020·温州模拟)已知圆C:(x-2)2+y2=2,直线l:y=kx,其中k为[-,]上的任意一个实数,则事件“直线l与圆C相离”发生的概率为( )
A. B.
C. D.
解析:D [当直线l与圆C相离时,圆心C到直线l的距离d=>,解得k>1或k<-1,又k∈[-,],所以-≤k<-1或1<k≤,故事件“直线l与圆C相离”发生的概率P==,故选D.]
7.(2019·潍坊三模)已知O为坐标原点,A,B是圆C:x2+y2-6y+5=0上两个动点,且|AB|=2,则|+|的取值范围是( )
A.[6-2,6+2] B.[3-,3+]
C.[3,9] D.[3,6]
解析:A [圆C:x2+(y-3)2=4,取弦AB的中点M,连接CM,CA,在直角三角形CMA中,|CA|=2,|MA|=1,则|CM|==,则点M的轨迹方程为x2+(y-3)2=3,则|
- 6 -
+|=2||∈[6-2,6+2].]
8.(多选题)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同的交点的一个充分不必要条件是( )
A.0
相关文档
- 浙江专用2020版高考数学一轮复习(练2021-06-109页
- 2018版高考数学(人教A版理)一轮复习:2021-06-106页
- 专题16+解析几何(大题部分)-解题思维2021-06-1020页
- 2019届二轮复习规范答题示范——解2021-06-1012页
- 2013年高考数学(理科)真题分类汇编H2021-06-1047页
- 2020届二轮复习解析几何与向量综合2021-06-1013页
- 2020届高考理科数学二轮专题复习课2021-06-1040页
- 2021届高考数学一轮复习第七章解析2021-06-1036页
- 2019届二轮复习解析几何第2讲课件(32021-06-1033页
- 2021版高考数学一轮复习第十章平面2021-06-1016页