• 277.50 KB
  • 2021-06-11 发布

【数学】2018届一轮复习北师大版直线与圆、圆与圆的位置关系

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第四节 直线与圆、圆与圆的位置关系 ‎ [考纲传真] 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想.‎ ‎1.判断直线与圆的位置关系常用的两种方法 ‎(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔相离.‎ ‎(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式Δ=b2-‎4ac,Δ>0⇔相交,Δ=0⇔相切,Δ<0⇔相离.‎ ‎2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r(r1>0),‎ 圆O2:(x-a2)2+(y-b2)2=r(r2>0).‎ 几何法:圆心距d与r1,r2的关系 代数法:联立两个圆的方程组成方程组的解的情况 相离 d>r1+r2‎ 无解 外切 d=r1+r2‎ 一组实数解 相交 ‎|r2-r1|0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是(  )‎ A.内切 B.相交 C.外切 D.相离 B [法一:由得两交点为(0,0),(-a,a).‎ ‎∵圆M截直线所得线段长度为2,‎ ‎∴=2.又a>0,∴a=2.‎ ‎∴圆M的方程为x2+y2-4y=0,即x2+(y-2)2=4,圆心M(0,2),半径r1=2.‎ 又圆N:(x-1)2+(y-1)2=1,圆心N(1,1),半径r2=1,‎ ‎∴|MN|==.‎ ‎∵r1-r2=1,r1+r2=3,1<|MN|<3,∴两圆相交.‎ 法二:∵x2+y2-2ay=0(a>0)⇔x2+(y-a)2=a2(a>0),‎ ‎∴M(0,a),r1=a.‎ ‎∵圆M截直线x+y=0所得线段的长度为2,∴圆心M到直线x+y=0的距离d==,解得a=2.‎ 以下同法一.]‎ ‎[规律方法] 1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系.‎ ‎2.若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.‎ ‎3.若两圆相交,则两圆的连心线垂直平分公共弦.‎ ‎[变式训练2] 若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是__________.‎ ‎4 [由题意⊙O1与⊙O在A处的切线互相垂直,则两切线分别过另一圆的圆心,‎ ‎∴O‎1A⊥OA.‎ 又∵|OA|=,|O‎1A|=2,‎ ‎∴|OO1|=5.‎ 又A,B关于OO1对称,‎ ‎∴AB为Rt△OAO1斜边上高的2倍.‎ 又∵·OA·O‎1A=OO1·AC,得AC=2.‎ ‎∴AB=4.]‎ 直线与圆的综合问题 ‎ (2016·江苏高考改编)如图841,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).‎ 图841‎ ‎(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;‎ ‎(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.‎ ‎[解] 圆M的标准方程为(x-6)2+(y-7)2=25,‎ 所以圆心M(6,7),半径为5. 1分 ‎(1)由圆心N在直线x=6上,可设N(6,y0).‎ 因为圆N与x轴相切,与圆M外切,‎ 所以0