• 111.00 KB
  • 2021-06-11 发布

【数学】2021届一轮复习北师大版(理)第6章经典微课堂规范答题系列2高考中的数列问题学案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎[命题解读] 从近五年全国卷高考试题来看,数列解答题常以an,Sn的关系为切入点,以等差(等比)数列基础知识为依托,重点考查等差(等比)数列的判定与证明,考查数列的通项及前n项和的求法(以分组求和、裂项求和为主),考查函数与方程的思想及逻辑推理、数学运算的核心素养,且难度有所提升.‎ ‎[典例示范] (本题满分12分)(2016·全国卷Ⅱ)Sn为等差数列{an}的前n项和,且a1=1,S7=28①.记bn=[lg an]②,其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.‎ ‎(1)求b1,b11,b101;‎ ‎(2)求数列{bn}的前1 000项和③.‎ ‎[信息提取] 看到①想到等差数列的求和公式;‎ 看到②想到等差数列的通项公式及对数的运算性质;‎ 看到③想到数列的常见求和方法.‎ ‎[规范解答] (1)设{an}的公差为d,S7=‎7a4=28,‎ 所以a4=4, 2分 所以d==1, 4分 所以an=a1+(n-1)d=n. 5分 所以b1=[lg a1]=[lg 1]=0,b11=[lg a11]=[lg 11]=1,b101=[lg a101]=[lg 101]=2. 6分 ‎(2)记{bn}的前n项和为Tn,则T1 000=b1+b2+…+b1 000=[lg a1]+[lg a2]+…+[lg a1 000],‎ 当0≤lg an<1时,n=1,2,…,9; 7分 当1≤lg an<2时,n=10,11,…,99; 9分 当2≤lg an<3时n=100,101,…,999; 11分 当lg an=3时,n=1 000,‎ 所以T1 000=0×9+1×90+2×900+3×1=1 893. 12分 ‎[易错防范]‎ 易错点 防范措施 对[lg an]认识错误 先结合题设条件理解[x],再结合对数的运算性质求出b1,b11,b101‎ 找不出[lg an]的规律求不出{bn}的前1 000项的和 结合(1)的结论,合情推理推出[lg an]的规律,并分类求出bn,最后利用分组求和求{bn}的前1 000项和 ‎[通性通法] (1)等差(或等比)数列的通项公式、前n项和公式中有五个元素a1,d(或q),n,an,Sn,“知三求二”是等差(等比)的基本题型,通过解方程(组)的方法达到解题的目的.‎ ‎(2)数列的求和问题常采用“公式法”“裂项相消法”等.‎ ‎[规范特训] (2019·天津二模)已知数列{an}满足a1=2,(n+2)an=(n+1)an+1-2(n2+3n+2),设bn=.‎ ‎(1)证明数列{bn}是等差数列;‎ ‎(2)设=2n+1,求数列{cn}的前n项和Tn(n∈N+).‎ ‎[解] (1)因为a1=2,所以b1==1.‎ 将(n+2)an=(n+1)an+1-2(n2+3n+2)两边同时除以(n+1)(n+2)得:‎ =-2,∴-=2,即bn+1-bn=2.‎ ‎∴数列{bn}是以1为首项,2为公差的等差数列.‎ ‎(2)由(1)得bn=1+2(n-1)=2n-1.‎ ‎∵=2n+1,∴cn=(2n+1)bn=(2n-1)·2n+2n-1.‎ 设Pn=1×2+3×22+5×23+…+(2n-1)·2n,‎ ‎2Pn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,‎ 两式相减得:-Pn=2+2(22+23+…+2n)-(2n-1)·2n+1=2+2×-(2n-1)·2n+1=-6-(2n-3)·2n+1.‎ 化简得Pn=6+(2n-3)·2n+1.‎ 设Sn=1+3+5+…+(2n-1)==n2,‎ ‎∴Tn=Pn+Sn=6+(2n-3)·2n+1+n2.‎