- 535.50 KB
- 2021-06-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 平面向量的数量积及应用举例
1.平面向量的数量积
定义
设两个非零向量a,b的夹角为θ,则数量|a||b|·cos__θ叫做a与b的数量积,记作a·b
投影
|a|cos__θ叫做向量a在b方向上的投影,
|b|cos__θ叫做向量b在a方向上的投影
几何意义
数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积
2.向量的夹角
定义
图示
范围
共线与垂直
已知两个非零向量a和b,作=a,=b,则∠AOB就是a与b的夹角
设θ是a与b的夹角,则θ的取值范围是 0°≤θ≤180°
若θ=0°,则a与b同向;若θ=180°,则a与b反向;若θ=90°,则a与b垂直
3.向量数量积的运算律
(1)a·b=b·a;
(2)(λa)·b=λ(a·b)=a·(λb);
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的坐标运算及有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,a·b=x1x2+y1y2.
结论
几何表示
坐标表示
模
|a|=
|a|=
夹角
cos θ=
cos θ=
a⊥b的充要条件
a·b=0
x1x2+y1y2=0
判断正误(正确的打“√”,错误的打“×”)
(1)向量在另一个向量方向上的投影为数量,而不是向量.( )
(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( )
(3)由a·b=0可得a=0或b=0.( )
(4)(a·b)c=a(b·c).( )
(5)两个向量的夹角的范围是.( )
(6)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.( )
答案:(1)√ (2)√ (3)× (4)× (5)× (6)×
(2016·高考全国卷Ⅲ)已知向量=,=,则∠ABC=( )
A.30° B.45°
C.60° D.120°
解析:选A.由两向量的夹角公式,可得cos ∠ABC===,则∠ABC=30°.
已知a,b是平面向量.如果|a|=3,|b|=4,|a+b|=2,那么|a-b|=( )
A. B.7
C.5 D.
解析:选A.由|a+b|2=a2+2a·b+b2=9+2a·b+16=4,得2a·b=-21,所以|a-b|2=a2-2a·b+b2=9+21+16=46,所以|a-b|=.
(2017·高考全国卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________.
解析:因为a+b=(m-1,3),a+b与a垂直,所以(m-1)×(-1)+3×2=0,解得m=7.
答案:7
已知两个单位向量e1,e2的夹角为,若向量b1=e1-2e2,b2=3e1+4e2,则b1·b2=________.
解析:b1·b2=(e1-2e2)·(3e1+4e2)
=3e-2e1·e2-8e
=3-2×1×1×cos -8=-6.
答案:-6
平面向量数量积的运算
[典例引领]
(1)(2018·豫南九校联考)已知向量a=(m,2),b=(2,-1),且a⊥b,则等于( )
A.- B.1
C.2 D.
(2)(2017·高考全国卷Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则·(+)的最小值是( )
A.-2 B.-
C.- D.-1
【解析】 (1)因为a⊥b,所以2m-2=0,所以m=1,则2a-b=(0,5),a+b=(3,1),所以a·(a+b)=1×3+2×1=5,|2a-b|=5,所以==1.
(2)如图,以等边三角形ABC的底边BC所在直线为x轴,以BC的垂直平分线为y轴建立平面直角坐标系,
则A(0,),B(-1,0),C(1,0),设P(x,y),则=(-x,-y),=(-1-x,-y),=(1-x,-y),所以·(+)=(-x,-y)·(-2x,-2y)=2x2+2(y-)2-,当x=0,y=时,·(+)取得最小值,为-,选择B.
【答案】 (1)B (2)B
在本例(2)的条件下,若D,E是边BC的两个三等分点(D靠近点B),则·等于________.
解析:法一:(通性通法)
因为D,E是边BC的两个三等分点,所以BD=DE=CE=,在△ABD中,AD2=BD2+AB2
-2BD·AB·cos 60°=+22-2××2×=,即AD=,同理可得AE=,在△ADE中,由余弦定理得cos∠DAE===,所以·=||·||cos∠DAE=××=.
法二:(光速解法)
如图,建立平面直角坐标系,由正三角形的性质易得
A,D,E,
所以=,=,
所以·=·=.
答案:
(1)向量数量积的两种运算方法
①当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.
②当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(2)数量积在平面几何中的应用
解决涉及几何图形的向量的数量积运算问题时,常利用解析法,巧妙构造坐标系,利用坐标求解.
[通关练习]
1.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,那么a与b的数量积等于( )
A.- B.-
C. D.
解析:选D.a+2b=(-1+2m,4),2a-b=(-2-m,3),由题意得3(-1+2m)-4(-2-m)=0,则m=-,所以a·b=-1×+2×1=.
2.(2018·云南省第一次统一检测)在▱ABCD中,||=8,||=6,N为DC的中点,=2,则·=( )
A.48 B.36
C.24 D.12
解析:选C.法一:·=(+)·(+)=·=2-2=×82-×62=24.
法二:(特例图形),若▱ABCD为矩形,建立如图所示坐标系,
则N(4,6),M(8,4).
所以=(8,4),=(4,-2)
所以·=(8,4)·(4,-2)=32-8=24.
3.(2017·高考北京卷)已知点P在圆x2+y2=1上,点A的坐标为(-2,0),O为原点,则·的最大值为________.
解析:法一:由题意知,=(2,0),令P(cos α,sin α),则=(cos α+2,sin α),·=(2,0)·(cos α+2,sin α)=2cos α+4≤6,故·的最大值为6.
法二:由题意知,=(2,0),令P(x,y),-1≤x≤1,则·=(2,0)·(x+2,y)=2x+4≤6,故·的最大值为6.
答案:6
平面向量的夹角与模(高频考点)
平面向量的夹角与模的问题是高考中的常考内容,题型多为选择题、填空题,
属中档题.高考对平面向量的夹角与模的考查主要有以下三个命题角度:
(1)求两向量的夹角;
(2)求向量的模;
(3)两向量垂直问题.
[典例引领]
角度一 求两向量的夹角
(2018·成都市第二次诊断性检测)已知平面向量a,b的夹角为,且|a|=1,|b|=,则a+2b与b的夹角是( )
A. B.
C. D.
【解析】 因为|a+2b|2=|a|2+4|b|2+4a·b=1+1+4×1××cos =3,所以|a+2b|=,又(a+2b)·b=a·b+2|b|2=1××cos +2×=+=,所以cos〈a+2b,b〉===,所以a+2b与b的夹角为.
【答案】 A
角度二 求向量的模
在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若·=1,则AB的长为________.
【解析】 设AB的长为a(a>0),又因为=+,=+=-,于是·=(+)·=·-2+2=-a2+a+1,由已知可得-a2+a+1=1.又a>0,
所以a=,即AB的长为.
【答案】
角度三 两向量垂直问题
已知向量与的夹角为120°,且||=3,||=2.若=λ+,且⊥,则实数λ的值为________.
【解析】 因为⊥,所以·=0.
又=λ+,=-,
所以(λ+)·(-)=0,
即(λ-1)·-λ2+2=0,
所以(λ-1)||||cos 120°-9λ+4=0.
所以(λ-1)×3×2×(-)-9λ+4=0.解得λ=.
【答案】
(1)求平面向量的夹角的方法
①定义法:利用向量数量积的定义知,cos θ=,其中两个向量的夹角θ的范围为[0,π],求解时应求出三个量:a·b,|a|,|b|或者找出这三个量之间的关系;
②坐标法:若a=(x1,y1),b=(x2,y2),则cos θ=;
(2)求向量的模的方法
①公式法:利用|a|=及(a±b)2=|a|2±2a·b+|b|2,把向量模的运算转化为数量积运算.
②几何法:利用向量的几何意义,即利用向量加、减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.
[通关练习]
1.(2018·河南百校联盟联考)已知非零向量a,b满足:2a·(2a-b)=b·(b-2a),|a-b|=3|a|,则a与b的夹角为________.
解析:由2a·(2a-b)=b·(b-2a)得4a2=b2,由|a-b|=3|a|得a2-2a·b+2b2=9a2,则a·b=0,即a⊥b,所以a与b的夹角为90°.
答案:90°
2.(2017·高考山东卷)已知e1,e2是互相垂直的单位向量.若e1-e2与e1+λe2的夹角为60°,则实数λ的值是________
解析:因为=,
故=,解得λ=.
答案:
3.(2018·东北四市高考模拟)已知向量=(3,1),=(-1,3),=m-n(m>0,n>0),若m+n=1,则||的最小值为________.
解析:由=(3,1),=(-1,3)得=m-n=(3m+n,m-3n),因为m+n=1(m>0,n>0),所以n=1-m且00,反之不成立;两个向量夹角为钝角,则有a·b<0,反之也不成立.
易错防范
(1)a·b=0不能推出a=0或b=0,因为a·b=0时,有可能a⊥b.
(2)a·b=a·c(a≠0)不能推出b=c,即消去律不成立.
1.(2018·洛阳市第一次统一考试)已知平面向量a,b满足|a|=2,|b|=1,a与b的夹角为,且(a+λb)⊥(2a-b),则实数λ的值为( )
A.-7 B.-3
C.2 D.3
解析:选D.依题意得a·b=2×1×cos =-1,(a+λb)·(2a-b)=0,即2a2-λb2+(2λ-1)a·b=0,-3λ+9=0,λ=3.
2.(2018·山西四校联考)向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( )
A.0 B.
C. D.
解析:选B.(a-b)·a=0⇒a2=b·a,|a+b|=2|a|⇒a2+b2+2a·b=12a2⇒b2=9a2,所以cos〈a,b〉===.故选B.
3.(2018·洛阳市第一次统一考试)已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( )
A. B.-
C.1 D.-1
解析:选D.依题意得|a|=1,a·b=1××cos 45°=1,|d|===1,c
·d=a2-b2=-1,因此c在d方向上的投影等于=-1,选D.
4.在△ABC中,(+)·=||2,则△ABC的形状一定是( )
A.等边三角形 B.等腰三角形
C.直角三角形 D.等腰直角三角形
解析:选C.由(+)·=||2,得·(+-)=0,即·(++)=0,
所以2·=0,所以⊥.
所以∠A=90°,又因为根据条件不能得到||=||.故选C.
5.(2018·福建漳州八校联考)在△ABC中,|+|=|-|,||=||=3,则·的值为( )
A.3 B.-3
C.- D.
解析:选D.由|+|=|-|两边平方可得,2+2+2·=3(2+2-2·),即2+2=4·,又||=||=3,所以·=,又因为=-,所以·=(-)·(-)=2-·=9-=,故选D.
6.(2017·高考全国卷Ⅰ)已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2 b|= ________ .
解析:易知|a+2b|=
==2.
答案:2
7.(2018·江西七校联考)已知向量a=(1,),b=(3,m),且b在a上的投影为-3,则向量a与b的夹角为________.
解析:因为b在a上的投影为-3,
所以|b|cos〈a,b〉=-3,又|a|==2,所以a·b=|a||b|cos〈a,b〉=-6,又a·b=1×3+m,所以3+m=-6,解得m=-3,则b=(3,-3),所以|b|==6,所以cos〈a,b〉===-,因为0≤〈a,b〉≤π,所以a与b的夹角为π.
答案:π
8.(2017·高考天津卷)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为________.
解析:=+=+=+(-)=+.又·=3×2×=3,所以·=·(-+λ)
=-2+·+λ2
=-3+3+λ×4=λ-5=-4,则λ=.
答案:
9.已知向量a=(2,-1),b=(1,x).
(1)若a⊥(a+b),求|b|的值;
(2)若a+2b=(4,-7),求向量a与b夹角的大小.
解:(1)由题意得a+b=(3,-1+x).
由a⊥(a+b),可得6+1-x=0,
解得x=7,即b=(1,7),
所以|b|==5.
(2)a+2b=(4,2x-1)=(4,-7),
故x=-3,
所以b=(1,-3),
所以cos〈a,b〉===,
因为〈a,b〉∈[0,π],
所以a与b夹角是.
10.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.
(1)求a与b的夹角θ;
(2)求|a+b|;
(3)若=a,=b,求△ABC的面积.
解:(1)因为(2a-3b)·(2a+b)=61,
所以4|a|2-4a·b-3|b|2=61.
又|a|=4,|b|=3,所以64-4a·b-27=61,
所以a·b=-6.所以cos θ===-.
又因为0≤θ≤π,所以θ=.
(2)|a+b|2=(a+b)2=|a|2+2a·b+|b|2
=42+2×(-6)+32=13,所以|a+b|=.
(3)因为与的夹角θ=,
所以∠ABC=π-=.
又||=|a|=4,||=|b|=3,
所以S△ABC=||||sin ∠ABC=×4×3×=3.
1.已知点G为△ABC的重心,∠A=120°,·=-2,则||的最小值是( )
A. B.
C. D.
解析:选C.设BC的中点为M,则=.
又M为BC中点,
所以=(+),
所以==(+),
所以||= .
又因为·=-2,∠A=120°,
所以||||=4.
所以||=
≥ =,
当且仅当||=||时取“=”,
所以||的最小值为,故选C.
2.(2018·广东七校联考)在等腰直角△ABC中,∠ABC=90°,AB=BC=2,M,N为AC边上的两个动点(M,N不与A,C重合),且满足||=,则·的取值范围为( )
A. B.
C. D.
解析:选C.不妨设点M靠近点A,点N靠近点C,以等腰直角三角形ABC的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,
则B(0,0),A(0,2),C(2,0),线段AC的方程为x+y-2=0(0≤x≤2).设M(a,2-a),N(a+1,1-a)(由题意可知0