• 1.11 MB
  • 2021-06-11 发布

【数学】2018届一轮复习苏教版(理)第八章立体几何与空间向量8-3学案

  • 19页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.线面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定 定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行(简记为“线线平行⇒线面平行”)‎ ‎∵l∥a,a⊂α,l⊄α,∴l∥α 性质 定理 如果一条直线和一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线就和交线平行(简记为“线面平行⇒线线平行”)‎ ‎∵l∥α,l⊂β,α∩β=b,∴l∥b ‎2.面面平行的判定定理和性质定理 文字语言 图形语言 符号语言 判定 定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行(简记为“线面平行⇒面面平行”)‎ ‎∵a∥β,b∥β,a∩b=P,a⊂α,b⊂α,∴α∥β 性质 定理 如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 ‎∵α∥β,α∩γ=a,β∩γ=b,∴a∥b ‎【知识拓展】‎ 重要结论 ‎(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;‎ ‎(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;‎ ‎(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.‎ ‎【思考辨析】‎ 判断下列结论是否正确(请在括号中打“√”或“×”)‎ ‎(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( × )‎ ‎(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( × )‎ ‎(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( × )‎ ‎(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √ )‎ ‎(5)若直线a与平面α内无数条直线平行,则a∥α.( × )‎ ‎(6)若α∥β,直线a∥α,则a∥β.( × )‎ ‎1.(教材改编)下列命题中不正确的有________.‎ ‎①若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;‎ ‎②若直线a和平面α满足a∥α,那么a与α内的任何直线平行;‎ ‎③平行于同一条直线的两个平面平行;‎ ‎④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.‎ 答案 ①②③‎ 解析 ①中,a可以在过b的平面内;②中,a与α内的直线可能异面;③中,两平面可相交;④中,由直线与平面平行的判定定理知,b∥α,正确.‎ ‎2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的_______条件.‎ 答案 必要不充分 解析 当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.‎ ‎3.(2016·盐城模拟)下列命题中,正确的序号为________.‎ ‎①平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行;‎ ‎②平行于同一个平面的两个平面平行;‎ ‎③若两个平面平行,则位于这两个平面内的直线也互相平行;‎ ‎④若两个平面平行,则其中一个平面内的直线平行于另一个平面.‎ 答案 ①②④‎ 解析 由面面平行的判定定理和性质知①②④正确.对于③,位于两个平行平面内的直线也可能异面.‎ ‎4.(教材改编)如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面ACE 的位置关系为________.‎ 答案 平行 解析 连结BD,设BD∩AC=O,连结EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,‎ 则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,‎ 所以BD1∥平面ACE.‎ ‎5.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.‎ 答案 平行四边形 解析 ∵平面ABFE∥平面DCGH,‎ 又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,‎ ‎∴EF∥HG.同理EH∥FG,‎ ‎∴四边形EFGH的形状是平行四边形.‎ 题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定 例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.‎ ‎(1)求证:AP∥平面BEF;‎ ‎(2)求证:GH∥平面PAD.‎ 证明 (1)连结EC,‎ ‎∵AD∥BC,BC=AD,‎ ‎∴BC綊AE,‎ ‎∴四边形ABCE是平行四边形,‎ ‎∴O为AC的中点.‎ 又∵F是PC的中点,∴FO∥AP,‎ FO⊂平面BEF,AP⊄平面BEF,‎ ‎∴AP∥平面BEF.‎ ‎(2)连结FH,OH,‎ ‎∵F,H分别是PC,CD的中点,‎ ‎∴FH∥PD,∴FH∥平面PAD.‎ 又∵O是BE的中点,H是CD的中点,‎ ‎∴OH∥AD,∴OH∥平面PAD.‎ 又FH∩OH=H,∴平面OHF∥平面PAD.‎ 又∵GH⊂平面OHF,∴GH∥平面PAD.‎ 命题点2 直线与平面平行的性质 例2 (2017·镇江月考)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.‎ ‎(1)证明:GH∥EF;‎ ‎(2)若EB=2,求四边形GEFH的面积.‎ ‎(1)证明 因为BC∥平面GEFH,BC⊂平面PBC,‎ 且平面PBC∩平面GEFH=GH,‎ 所以GH∥BC.‎ 同理可证EF∥BC,因此GH∥EF.‎ ‎(2)解 如图,连结AC,BD交于点O,BD交EF于点K,连结OP,GK.‎ 因为PA=PC,O是AC的中点,所以PO⊥AC,‎ 同理可得PO⊥BD.‎ 又BD∩AC=O,且AC,BD都在底面内,‎ 所以PO⊥底面ABCD.‎ 又因为平面GEFH⊥平面ABCD,‎ 且PO⊄平面GEFH,所以PO∥平面GEFH.‎ 因为平面PBD∩平面GEFH=GK,‎ 所以PO∥GK,且GK⊥底面ABCD,‎ 从而GK⊥EF.‎ 所以GK是梯形GEFH的高.‎ 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,‎ 从而KB=DB=OB,即K为OB的中点.‎ 再由PO∥GK得GK=PO,‎ 即G是PB的中点,且GH=BC=4.‎ 由已知可得OB=4,‎ PO===6,‎ 所以GK=3.‎ 故四边形GEFH的面积S=·GK ‎=×3=18.‎ 思维升华 判断或证明线面平行的常用方法 ‎(1)利用线面平行的定义(无公共点);‎ ‎(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);‎ ‎(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);‎ ‎(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).‎ ‎ 如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.‎ 证明 ∵CD∥平面EFGH,‎ 而平面EFGH∩平面BCD=EF,‎ ‎∴CD∥EF.‎ 同理HG∥CD,∴EF∥HG.‎ 同理HE∥GF,‎ ‎∴四边形EFGH为平行四边形.‎ ‎∴CD∥EF,HE∥AB,‎ ‎∴∠HEF为异面直线CD和AB所成的角.‎ 又∵CD⊥AB,∴HE⊥EF.‎ ‎∴平行四边形EFGH为矩形.‎ 题型二 平面与平面平行的判定与性质 例3 (2016·镇江模拟)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:‎ ‎(1)B,C,H,G四点共面;‎ ‎(2)平面EFA1∥平面BCHG.‎ 证明 (1)∵G,H分别是A1B1,A1C1的中点,‎ ‎∴GH是△A1B1C1的中位线,‎ ‎∴GH∥B1C1.‎ 又∵B1C1∥BC,∴GH∥BC,‎ ‎∴B,C,H,G四点共面.‎ ‎(2)∵E,F分别是AB,AC的中点,‎ ‎∴EF∥BC.‎ ‎∵EF⊄平面BCHG,BC⊂平面BCHG,‎ ‎∴EF∥平面BCHG.‎ ‎∵A1G綊EB,‎ ‎∴四边形A1EBG是平行四边形,‎ ‎∴A1E∥GB.‎ ‎∵A1E⊄平面BCHG,GB⊂平面BCHG,‎ ‎∴A1E∥平面BCHG.‎ ‎∵A1E∩EF=E,‎ ‎∴平面EFA1∥平面BCHG.‎ 引申探究 ‎1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.‎ 证明 如图所示,连结HD,A1B,‎ ‎∵D为BC1的中点,H为A1C1的中点,‎ ‎∴HD∥A1B,‎ 又HD⊄平面A1B1BA,‎ A1B⊂平面A1B1BA,‎ ‎∴HD∥平面A1B1BA.‎ ‎2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.‎ 证明 如图所示,连结A1C交AC1于点M,‎ ‎∵四边形A1ACC1是平行四边形,‎ ‎∴M是A1C的中点,连结MD,‎ ‎∵D为BC的中点,‎ ‎∴A1B∥DM.‎ ‎∵A1B⊂平面A1BD1,‎ DM⊄平面A1BD1,‎ ‎∴DM∥平面A1BD1.‎ 又由三棱柱的性质知,D1C1綊BD,‎ ‎∴四边形BDC1D1为平行四边形,‎ ‎∴DC1∥BD1.‎ 又DC1⊄平面A1BD1,BD1⊂平面A1BD1,‎ ‎∴DC1∥平面A1BD1,‎ 又∵DC1∩DM=D,DC1,DM⊂平面AC1D,‎ ‎∴平面A1BD1∥平面AC1D.‎ 思维升华 证明面面平行的方法 ‎(1)面面平行的定义;‎ ‎(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;‎ ‎(3)利用垂直于同一条直线的两个平面平行;‎ ‎(4)两个平面同时平行于第三个平面,那么这两个平面平行;‎ ‎(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.‎ ‎ 如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:‎ ‎(1)BE∥平面DMF;‎ ‎(2)平面BDE∥平面MNG.‎ 证明 (1)如图所示,连结AE,设DF与GN交于点O,连结AE,则AE必过O点,‎ 连结MO,则MO为△ABE的中位线,‎ 所以BE∥MO.‎ 因为BE⊄平面DMF,MO⊂平面DMF,‎ 所以BE∥平面DMF.‎ ‎(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,‎ 所以DE∥GN.‎ 因为DE⊄平面MNG,GN⊂平面MNG,‎ 所以DE∥平面MNG.‎ 因为M为AB的中点,‎ 所以MN为△ABD的中位线,‎ 所以BD∥MN.‎ 因为BD⊄平面MNG,MN⊂平面MNG,‎ 所以BD∥平面MNG.‎ 因为DE与BD为平面BDE内的两条相交直线,‎ 所以平面BDE∥平面MNG.‎ 题型三 平行关系的综合应用 例4 (2016·盐城模拟)如图所示,在三棱柱ABC-A1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.‎ 解 方法一 存在点E,且E为AB的中点时,DE∥平面AB1C1.‎ 下面给出证明:‎ 如图,取BB1的中点F,连结DF,‎ 则DF∥B1C1,‎ ‎∵AB的中点为E,连结EF,ED,‎ 则EF∥AB1,B1C1∩AB1=B1,‎ ‎∴平面DEF∥平面AB1C1.‎ 而DE⊂平面DEF,‎ ‎∴DE∥平面AB1C1.‎ 方法二 假设在棱AB上存在点E,‎ 使得DE∥平面AB1C1,‎ 如图,取BB1的中点F,连结DF,EF,ED,则DF∥B1C1,‎ 又DF⊄平面AB1C1,B1C1⊂平面AB1C1,‎ ‎∴DF∥平面AB1C1,‎ 又DE∥平面AB1C1,DE∩DF=D,‎ ‎∴平面DEF∥平面AB1C1,‎ ‎∵EF⊂平面DEF,∴EF∥平面AB1C1,‎ 又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,‎ ‎∴EF∥AB1,‎ ‎∵点F是BB1的中点,∴点E是AB的中点.‎ 即当点E是AB的中点时,DE∥平面AB1C1.‎ 思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.‎ ‎ (2016·南京模拟)如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?‎ 解 ∵AB∥平面EFGH,‎ 平面EFGH与平面ABC和平面ABD分别交于FG,EH.‎ ‎∴AB∥FG,AB∥EH,‎ ‎∴FG∥EH,同理可证EF∥GH,‎ ‎∴截面EFGH是平行四边形.‎ 设AB=a,CD=b,∠FGH=α (α即为异面直线AB和CD所成的角或其补角).‎ 又设FG=x,GH=y,则由平面几何知识可得=,‎ =,两式相加得+=1,即y=(a-x),‎ ‎∴S▱EFGH=FG·GH·sin α ‎=x··(a-x)·sin α=x(a-x).‎ ‎∵x>0,a-x>0且x+(a-x)=a为定值,‎ ‎∴x(a-x)≤,当且仅当x=a-x时等号成立.‎ 此时x=,y=.‎ 即当截面EFGH的顶点E、F、G、H分别为棱AD、AC、BC、BD的中点时截面面积最大.‎ ‎5.立体几何中的探索性问题 典例 (14分)如图,在四棱锥S-ABCD中,已知底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,tan∠SDA=.‎ ‎(1)求四棱锥S-ABCD的体积;‎ ‎(2)在棱SD上找一点E,使CE∥平面SAB,并证明.‎ 规范解答 解 (1)∵SA⊥底面ABCD,tan∠SDA=,SA=2,‎ ‎∴AD=3. [2分]‎ 由题意知四棱锥S-ABCD的底面为直角梯形,且SA=AB=BC=2,‎ VS-ABCD=·SA··(BC+AD)·AB ‎=×2××(2+3)×2=. [6分]‎ ‎(2)当点E位于棱SD上靠近D的三等分点处时,可使CE∥平面SAB. [8分]‎ 证明如下:‎ 取SD上靠近D的三等分点为E,取SA上靠近A的三等分点为F,连结CE,EF,BF,‎ 则EF綊AD,BC綊AD,‎ ‎∴BC綊EF,∴CE∥BF. [12分]‎ 又∵BF⊂平面SAB,CE⊄平面SAB,‎ ‎∴CE∥平面SAB. [14分]‎ 解决立体几何中的探索性问题的步骤 第一步:写出探求的最后结论;‎ 第二步:证明探求结论的正确性;‎ 第三步:给出明确答案;‎ 第四步:反思回顾,查看关键点、易错点和答题规范.‎ ‎1.(2016·南通模拟)有下列命题:‎ ‎①若直线l平行于平面α内的无数条直线,则直线l∥α;‎ ‎②若直线a在平面α外,则a∥α;‎ ‎③若直线a∥b,b∥α,则a∥α;‎ ‎④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.‎ 其中真命题的个数是________.‎ 答案 1‎ 解析 命题①,l可以在平面α内,不正确;命题②,直线a与平面α可以是相交关系,不正确;命题③,a可以在平面α内,不正确;命题④正确.‎ ‎2.(2016·苏北四校联考)如图是一个几何体的平面展开图,其中四边形ABCD是正方形,E,F分别为PA,PD的中点.在此几何体中,给出下列四个结论:‎ ‎①直线BE与直线CF是异面直线;‎ ‎②直线BE与直线AF是异面直线;‎ ‎③直线EF∥平面PBC;‎ ‎④平面BCE⊥平面PAD.‎ 其中正确结论的序号为________.‎ 答案 ②③‎ 解析 因为EF綊AD,AD綊BC,所以EF綊BC,所以E,B,C,F四点共面,所以BE与CF共面,所以①错误;因为AF⊂平面PAD,E∈平面PAD,E∉直线AF,B∉平面PAD,所以BE与AF是异面直线,所以②正确;因为EF∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,所以③正确;由于不能推出线面垂直,故平面BCE⊥平面PAD不成立,所以④错误.‎ ‎3.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是________.‎ ‎①若m∥α,n∥α,则m∥n;‎ ‎②若m∥α,n⊂α,则m∥n;‎ ‎③若m∥α,n⊥α,则m∥n;‎ ‎④若m⊥α,n⊥α,则m∥n.‎ 答案 ④‎ 解析 对①,直线m,n可能平行、异面或相交,故①错误;对②,直线m与n可能平行,也可能异面,故②错误;对③,m与n垂直而非平行,故③错误;对④,垂直于同一平面的两直线平行,故④正确.‎ ‎4.(2016·南京、徐州、连云港联考)设m,n是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号是________.‎ ‎①若m∥n,m⊥β,则n⊥β;‎ ‎②若m∥n,m∥β,则n∥β;‎ ‎③若m∥α,m∥β,则α∥β;‎ ‎④若n⊥α,n⊥β,则α⊥β.‎ 答案 ①‎ 解析 如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这一平面,①正确;若m∥n,m∥β,则n∥β或n⊂β,②不正确;若m∥α,m∥β,则α,β 可能平行也可能相交,③不正确;若n⊥α,n⊥β,则α∥β,④不正确.‎ ‎5.如图,L,M,N分别为正方体对应棱的中点,则平面LMN与平面PQR的位置关系是________.‎ 答案 平行 解析 如图,分别取另三条棱的中点A,B,C,将平面LMN延展为平面正六边形AMBNCL,因为PQ∥AL,PR∥AM,且PQ与PR相交,AL与AM相交,所以平面PQR∥平面AMBNCL,即平面LMN∥平面PQR.‎ ‎6.(2016·全国甲卷)α,β是两个平面,m,n是两条直线,有下列四个命题:‎ ‎①如果m⊥n,m⊥α,n∥β,那么α⊥β;‎ ‎②如果m⊥α,n∥α,那么m⊥n;‎ ‎③如果α∥β,m⊂α,那么m∥β;‎ ‎④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.‎ 其中正确的命题有________.‎ 答案 ②③④‎ 解析 当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.‎ ‎7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.‎ ‎①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.‎ 可以填入的条件有________.‎ 答案 ①或③‎ 解析 由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.‎ ‎8.在正四棱柱ABCD-A1B1C1D1中,O是底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.‎ 答案 Q为CC1的中点 解析 假设Q为CC1的中点.‎ 因为P为DD1的中点,‎ 所以QB∥PA.‎ 连结DB,因为O是底面ABCD的中心,‎ 所以D1B∥PO,‎ 又D1B⊄平面PAO,QB⊄平面PAO,且PA∩PO于P,‎ 所以D1B∥平面PAO,QB∥平面PAO,‎ 又D1B∩QB于B,所以平面D1BQ∥平面PAO.‎ 故点Q满足条件,Q为CC1的中点时,有平面D1BQ∥平面PAO.‎ ‎9.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:‎ ‎①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填命题的序号)‎ 答案 ①③‎ 解析 由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.‎ ‎10.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.‎ 答案 (8,10)‎ 解析 设==k,∴==1-k,‎ ‎∴GH=5k,EH=4(1-k),∴周长=8+2k.‎ 又∵0