• 1.18 MB
  • 2021-06-11 发布

【数学】2019届一轮复习北师大版(文科数学)第十章第1讲 随机事件的概率学案

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
知识点 考纲下载 随机事件的概率 ‎ 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.‎ ‎ 了解两个互斥事件的概率加法公式.‎ 古典概型 ‎ 理解古典概型及其概率计算公式.‎ ‎ 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.‎ 随机数与几何概型 ‎ 了解随机数的意义,能运用模拟方法估计概率.‎ ‎ 了解几何概型的意义.‎ 第1讲 随机事件的概率 ‎1.事件的分类 确定事件 必然事件 在条件S下,一定会发生的事件叫做相对于条件S的必然事件 不可能事件 在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件 随机事件 在条件S下,可能发生也可能不发生的事件叫做相对于条件S的随机事件 ‎2.概率与频率 ‎(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).‎ ‎3.事件的关系与运算 定 义 符号表示 包含关系 如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)‎ B⊇A(或A⊆B)‎ 相等关系 若B⊇A且A⊇B,那么称事件A与事件B相等 A=B 并事件(和事件)‎ 若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)‎ A∪B(或A+B)‎ 交事件(积事件)‎ 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)‎ A∩B(或AB)‎ 互斥事件 若A∩B为不可能事件,那么称事件A与事件B互斥 A∩B=∅‎ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅且A∪B=Ω ‎4.概率的几个基本性质 ‎(1)概率的取值范围:0≤P(A)≤1.‎ ‎(2)必然事件的概率:P(A)=1.‎ ‎(3)不可能事件的概率:P(A)=0.‎ ‎(4)概率的加法公式 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).‎ ‎(5)对立事件的概率 若事件A与事件B互为对立事件,则A∪B为必然事件.‎ P(A∪B)=1,P(A)=1-P(B).‎ ‎ 判断正误(正确的打“√”,错误的打“×”)‎ ‎(1)事件发生的频率与概率是相同的.(  )‎ ‎(2)随机事件和随机试验是一回事.(  )‎ ‎(3)在大量重复试验中,概率是频率的稳定值.(  )‎ ‎(4)两个事件的和事件是指两个事件都得发生.(  )‎ ‎(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(  )‎ ‎(6)两互斥事件的概率和为1.(  )‎ 答案:(1)× (2)× (3)√ (4)× (5)√ (6)×‎ ‎ (教材习题改编)总数为10万张的彩票,中奖率是,下列说法中正确的是(  )‎ A.买1张一定不中奖 B.买1 000张一定有一张中奖 C.买2 000张一定中奖 D.买2 000张不一定中奖 解析:选D.由题意知,彩票中奖属于随机事件,故买1张也可能中奖,买2 000张也可能不中奖.‎ ‎ (教材习题改编)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”(  )‎ A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件 C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件 答案:C ‎ 袋中装有3个白球,4个黑球,从中任取3个球,则 ‎①恰有1个白球和全是白球;‎ ‎②至少有1个白球和全是黑球;‎ ‎③至少有1个白球和至少有2个白球;‎ ‎④至少有1个白球和至少有1个黑球.‎ 在上述事件中,是互斥事件但不是对立事件的为(  )‎ A.①          B.②‎ C.③ D.④‎ 解析:选A.由题意可知,事件③④均不是互斥事件;①②为互斥事件,但②又是对立事件,满足题意只有①,故选A.‎ ‎ (教材习题改编)甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是________.‎ 解析:乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为+=.‎ 答案: ‎     随机事件的关系[学生用书P177]‎ ‎ [典例引领]‎ ‎ (1)从1,2,3,…,7这7个数中任取两个数,其中:‎ ‎①恰有一个是偶数和恰有一个是奇数;‎ ‎②至少有一个是奇数和两个都是奇数;‎ ‎③至少有一个是奇数和两个都是偶数;‎ ‎④至少有一个是奇数和至少有一个是偶数.‎ 上述事件中,是对立事件的是(  )‎ A.①           B.②④‎ C.③ D.①③‎ ‎(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是(  )‎ A.至多有一张移动卡 B.恰有一张移动卡 C.都不是移动卡 D.至少有一张移动卡 ‎【解析】 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”“一奇一偶”“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.‎ ‎(2)至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.‎ ‎【答案】 (1)C (2)A 判断互斥、对立事件的2种方法 ‎(1)定义法 判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.‎ ‎(2)集合法 ‎①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.‎ ‎②事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.  ‎ ‎[通关练习]‎ ‎1.设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的(  )‎ A.充分不必要条件 ‎ B.必要不充分条件 C.充要条件 ‎ D.既不充分也不必要条件 解析:选A.若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次, 事件A:“至少出现一次正面”,事件B:“3次都出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件.‎ ‎2.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则(  )‎ A.A与B是互斥而非对立事件 B.A与B是对立事件 C.B与C是互斥而非对立事件 D.B与C是对立事件 解析:选D.A∩B={出现点数1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω,故事件B,C是对立事件.‎ ‎      随机事件的频率与概率 ‎ [学生用书P177]‎ ‎[典例引领]‎ ‎ (2017·高考全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:‎ 最高 ‎[10,15)‎ ‎[15,20)‎ ‎[20,25)‎ ‎[25,30)‎ ‎[30,35)‎ ‎[35,40)‎ 气温 天数 ‎2‎ ‎16‎ ‎36‎ ‎25‎ ‎7‎ ‎4‎ 以最高气温位于各区间的频率估计最高气温位于该区间的概率.‎ ‎(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;‎ ‎(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.‎ ‎【解】 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.‎ ‎(2)当这种酸奶一天的进货量为450瓶时,‎ 若最高气温不低于25,则Y=6×450-4×450=900;‎ 若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;‎ 若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100.‎ 所以,Y的所有可能值为900,300,-100.‎ Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8.‎ ‎(1)概率与频率的关系 频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.‎ ‎(2)随机事件概率的求法 利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是事件的概率.  ‎ ‎[通关练习]‎ ‎(2016·高考全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出 险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎≥5‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(1)记A为事件“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;‎ ‎(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;‎ ‎(3)求续保人本年度平均保费的估计值.‎ 解:(1)事件A发生当且仅当一年内出险次数小于2.‎ 由所给数据知,一年内出险次数小于2的频率为 =0.55,‎ 故P(A)的估计值为0.55.‎ ‎(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,‎ 故P(B)的估计值为0.3.‎ ‎(3)由所给数据得 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查的200名续保人的平均保费为 ‎0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.‎ 因此,续保人本年度平均保费的估计值为1.192 5a.‎ ‎      互斥事件、对立事件的概率 ‎[学生用书P178]‎ ‎[典例引领]‎ ‎ 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:‎ ‎(1)P(A),P(B),P(C);‎ ‎(2)1张奖券的中奖概率;‎ ‎(3)1张奖券不中特等奖且不中一等奖的概率.‎ ‎【解】 (1)P(A)=,‎ P(B)==,‎ P(C)==.‎ 故事件A,B,C的概率分别为,,.‎ ‎(2)1张奖券中奖包含中特等奖、一等奖、二等奖.‎ 设“1张奖券中奖”这个事件为M,则M=A∪B∪C.‎ 因为A、B、C两两互斥,‎ 所以P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)‎ ‎==.‎ 故1张奖券的中奖概率为.‎ ‎(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,‎ 所以P(N)=1-P(A∪B)‎ ‎=1-=.‎ 故1张奖券不中特等奖且不中一等奖的概率为.‎ 求复杂互斥事件概率的2种方法 ‎(1)直接求法:将所求事件分解为一些彼此互斥的事件的和,运用互斥事件概率的加法公式计算.‎ ‎(2)间接求法:先求此事件的对立事件,再用公式P(A)=1-P()求得,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法就会较简便.‎ ‎[注意] 应用互斥事件概率的加法公式,一定要注意首先确定各个事件是否彼此互斥,然后求出各个事件发生的概率,再求和(或差).‎ ‎[通关练习]‎ ‎1.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是(  )‎ A.          B. C. D.1‎ 解析:选C.设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率为.‎ ‎2.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下表:‎ 排队人数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5人及5人以上 概率 ‎0.1‎ ‎0.16‎ ‎0.3‎ ‎0.3‎ ‎0.1‎ ‎0.04‎ 求:(1)至多2人排队等候的概率;‎ ‎(2)至少3人排队等候的概率.‎ 解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.‎ ‎(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.‎ ‎(2)法一:记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.‎ 法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.‎ ‎ 概率与频率的关系 对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).‎ ‎ 求复杂事件概率的方法 求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法:‎ ‎(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率;‎ ‎(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.  ‎ ‎[学生用书P327(单独成册)]‎ ‎1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是(  )‎ A.对立事件        B.不可能事件 C.互斥事件但不是对立事件 D.以上答案都不对 解析:选C.由互斥事件和对立事件的概念可判断,应选C.‎ ‎2.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为(  )‎ A.两个任意事件 B.互斥事件 C.非互斥事件 D.对立事件 解析:选B.因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.故选B.‎ ‎3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为(  )‎ A.0.95 B.0.97‎ C.0.92 D.0.08‎ 解析:选C.记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.‎ ‎4.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是(  )‎ A. B. C. D. 解析:选C.“取出的2个球全是红球”记为事件A,则P(A)=.因为“取出的2个球不全是红球”为事件A的对立事件,所以其概率为P()=1-P(A)=1-=.‎ ‎5.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件是次品”,则下列结论正确的是(  )‎ A.F与G互斥 B.E与G互斥但不对立 C.E,F,G任意两个事件均互斥 D.E与G对立 解析:选D.由题意得事件E与事件F不可能同时发生,是互斥事件;事件E与事件G不可能同时发生,是互斥事件;当事件F发生时,事件G一定发生,所以事件F与事件G不是互斥事件,故A、C错.事件E与事件G中必有一个发生,所以事件E与事件G对立,所以B错误,D正确.‎ ‎6.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量大于40克的概率为________.‎ 解析:由互斥事件概率加法公式知,重量大于40克的概率为1-0.3-0.5=0.2.‎ 答案:0.2‎ ‎7.某城市2017年的空气质量状况如下表所示:‎ 污染指数T ‎30‎ ‎60‎ ‎100‎ ‎110‎ ‎130‎ ‎140‎ 概率P 其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为________.‎ 解析:由题意可知2017年空气质量达到良或优的概率为 P=++=.‎ 答案: ‎8.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.‎ 解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n个,则=,故n=15.‎ 答案:15‎ ‎9.某商店试销某种商品20天,获得如下数据:‎ 日销售量(件)‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ 频数 ‎1‎ ‎5‎ ‎9‎ ‎5‎ 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.求当天商店不进货的概率.‎ 解:P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=+=.‎ 故当天不进货的概率为.‎ ‎10.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“”表示未购买.‎ ‎   商品 顾客人数    ‎ 甲 乙 丙 丁 ‎100‎ ‎√‎  ‎√‎ ‎√‎ ‎217‎  ‎√‎  ‎√‎ ‎200‎ ‎√‎ ‎√‎ ‎√‎  ‎300‎ ‎√‎  ‎√‎  ‎85‎ ‎√‎    ‎98‎  ‎√‎   ‎(1)估计顾客同时购买乙和丙的概率;‎ ‎(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;‎ ‎(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?‎ 解:(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.‎ ‎(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.‎ ‎(3)与(1)同理,可得:‎ 顾客同时购买甲和乙的概率可以估计为=0.2,‎ 顾客同时购买甲和丙的概率可以估计为=0.6,‎ 顾客同时购买甲和丁的概率可以估计为=0.1,‎ 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.‎ ‎1.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:‎ ‎162,153,148,154,165,168,172,171,173,150,‎ ‎151,152,160,165,164,179,149,158,159,175.‎ 根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为(  )‎ A. B. C. D. 解析:选A.从已知数据可以看出,在随机抽取的这20位学生中,身高在155.5~170.5 cm之间的学生有8人,频率为,故可估计在该校高二年级的所有学生中任抽一人,‎ 其身高在155.5~170.5 cm之间的概率约为.‎ ‎2.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________.‎ 解析:断头不超过两次的概率P1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P2=1-P1=1-0.97=0.03.‎ 答案:0.97 0.03‎ ‎3.一篇关于“键盘侠”的时评引发了大家对“键盘侠”的热议(“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象).某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.‎ 解析:在随机抽取的50人中,持反对态度的频率为1-=,所以可估计该地区对“键盘侠”持反对态度的有9 600×=6 912(人).‎ 答案:6 912‎ ‎4.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.‎ 解析:由题意得an=(-3)n-1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P==.‎ 答案: ‎5.如图,从A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:‎ 所用时间(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ 选择L1的人数 ‎6‎ ‎12‎ ‎18‎ ‎12‎ ‎12‎ 选择L2的人数 ‎0‎ ‎4‎ ‎16‎ ‎16‎ ‎4‎ ‎(1)试估计40分钟内不能赶到火车站的概率;‎ ‎(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;‎ ‎(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,‎ 为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.‎ 解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),‎ 所以用频率估计相应的概率为44÷100=0.44.‎ ‎(2)选择L1的有60人,选择L2的有40人,‎ 故由调查结果得频率为 所用时间 ‎(分钟)‎ ‎10~20‎ ‎20~30‎ ‎30~40‎ ‎40~50‎ ‎50~60‎ L1的频率 ‎0.1‎ ‎0.2‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ L2的频率 ‎0‎ ‎0.1‎ ‎0.4‎ ‎0.4‎ ‎0.1‎ ‎(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.‎ 由(2)知P(A1)=0.1+0.2+0.3=0.6,‎ P(A2)=0.1+0.4=0.5,‎ 因为P(A1)>P(A2),所以甲应选择L1 .‎ 同理,P(B1)=0.1+0.2+0.3+0.2=0.8,‎ P(B2)=0.1+0.4+0.4=0.9,‎ 因为P(B1)<P(B2),所以乙应选择L2.‎ ‎6.某保险公司利用简单随机抽样方法,对投保车辆进行抽样调查,样本车辆中每辆车的赔付结果统计如下:‎ 赔付金额(元)‎ ‎0‎ ‎1 000‎ ‎2 000‎ ‎3 000‎ ‎4 000‎ 车辆数(辆)‎ ‎500‎ ‎130‎ ‎100‎ ‎150‎ ‎120‎ ‎(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;‎ ‎(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.‎ 解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得 P(A)==0.15,P(B)==0.12.‎ 由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.‎ ‎(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,‎ 样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.‎