- 105.50 KB
- 2021-06-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
(一) 函数与导数中的高考热点问题
(对应学生用书第44页)
[命题解读] 函数是中学数学的核心内容,导数是研究函数的重要工具,因此,函数与导数是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有.
利用导数研究函数的性质
函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围.
(2015·全国卷Ⅱ)已知函数f(x)=ln x+a(1-x).
(1)讨论f(x)的单调性;
(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.
[解] (1)f(x)的定义域为(0,+∞),f′(x)=-a.
若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.
若a>0,则当x∈时,f′(x)>0;
当x∈时,f′(x)<0.
所以f(x)在上单调递增,在上单调递减.
(2)由(1)知,当a≤0时,f(x)在(0,+∞)上无最大值;
当a>0时,f(x)在x=取得最大值,最大值为
f=ln+a=-ln a+a-1.
因此f>2a-2等价于ln a+a-1<0.
令g(a)=ln a+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.
于是,当01时,g(a)>0.
因此,a的取值范围是(0,1).
[规律方法] 1.研究函数的性质,必须在定义域内进行,因此利用导数研究函数的性质,应遵循定义域优先的原则.
2.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f′(x)的符号问题上,而f′(x)>0或f′(x)<0,最终可转化为一个一元一次不等式或一元二次不等式问题.
3.若已知f(x)的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.
[跟踪训练] (2018·福州质检)已知函数f(x)=aln x+x2-ax(a∈R).
【导学号:79140096】
(1)若x=3是f(x)的极值点,求f(x)的单调区间;
(2)求g(x)=f(x)-2x在区间[1,e]的最小值h(a).
[解] (1)f(x)的定义域为(0,+∞),
f′(x)=+2x-a=,
因为x=3是f(x)的极值点,
所以f′(3)==0,解得a=9.
所以f′(x)==,
所以当0<x<或x>3时,f′(x)>0;
当<x<3时,f′(x)<0.
所以f(x)的单调递增区间为和(3,+∞),单调递减区间为.
(2)由题知,g(x)=f(x)-2x=aln x+x2-ax-2x.
g′(x)=-2=.
①当≤1,即a≤2时,g(x)在[1,e]上为增函数,
h(a)=g(1)=-a-1;
②当1<<e,即2<a<2e时,g(x)在上为减函数,在上为增函数,
h(a)=g=aln-a2-a;
③当≥e,即a≥2e时,g(x)在[1,e]上为减函数,
h(a)=g(e)=(1-e)a+e2-2e.
综上,h(a)=
利用导数研究函数的零点问题
研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图像交点的个数;(2)由函数的零点、图像交点的情况求参数的取值范围.
(2017·全国卷Ⅰ)已知函数f(x)=ae2x+(a-2)ex-x.
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.
[解] (1)f(x)的定义域为(-∞,+∞),
f′(x)=2ae2x+(a-2)ex-1=(aex-1)(2ex+1).
(ⅰ)若a≤0,则f′(x)<0,所以f(x)在(-∞,+∞)单调递减.
(ⅱ)若a>0,则由f′(x)=0得x=-ln a.
当x∈(-∞,-ln a)时,f′(x)<0;
当x∈(-ln a,+∞)时,f′(x)>0.
所以f(x)在(-∞,-ln a)单调递减,在(-ln a,+∞)单调递增.
(2)(ⅰ)若a≤0,由(1)知,f(x)至多有一个零点.
(ⅱ)若a>0,由(1)知,当x=-ln a时,f(x)取得最小值,最小值为f(-ln a
)=1-+ln a.
①当a=1时,由于f(-ln a)=0,故f(x)只有一个零点;
②当a∈(1,+∞)时,由于1-+ln a>0,
即f(-ln a)>0,故f(x)没有零点;
③当a∈(0,1)时,1-+ln a<0,即f(-ln a)<0.
又f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0,
故f(x)在(-∞,-ln a)有一个零点.
设正整数n0满足n0>ln,
则f(n0)=e(ae+a-2)-n0>e-n0>2-n0>0.
由于ln>-ln a,
因此f(x)在(-ln a,+∞)有一个零点.
综上,a的取值范围为(0,1).
[规律方法] 利用导数研究函数零点的两种常用方法
(1)用导数研究函数的单调性,借助零点存在性定理判断;或用导数研究函数的单调性和极值,再用单调性和极值定位函数图像求解零点问题.
(2)将零点问题转化为函数图像的交点问题,利用数形结合来解决.
[跟踪训练] (2018·武汉调研)已知f(x)=ln x-x3+2ex2-ax,a∈R,其中e为自然对数的底数.
(1)若f(x)在x=e处的切线的斜率为e2,求a;
(2)若f(x)有两个零点,求a的取值范围.
[解] (1)f′(x)=-3x2+4ex-a,
f′(e)=+e2-a=e2,∴a=.
(2)由ln x-x3+2ex2-ax=0,得-x2+2ex=a.
记F(x)=-x2+2ex,
则F′(x)=-2(x-e).
x∈(e,+∞),F′(x)<0,F(x)单调递减.
x∈(0,e),F′(x)>0,F(x)单调递增,
∴F(x)max=F(e)=+e2,
而x→0时,F(x)→-∞,
x→+∞时,F(x)→-∞.故a<+e2.
利用导数研究不等式问题(答题模板)
导数在不等式中的应用是每年高考的必考内容,且以解答题的形式考查,难度较大,属中高档题,突出转化思想、函数思想的考查.常见的命题角度有:(1)证明不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.
(本小题满分12分)(2017·全国卷Ⅱ)设函数f(x)=(1-x2)ex.
(1)讨论f(x)的单调性;
(2)当x≥0时,f(x)≤ax+1,求a的取值范围.
[规范解答] (1)f′(x)=(1-2x-x2)ex.
令f′(x)=0得x=-1-或x=-1+. 2分
当x∈(-∞,-1-)时,f′(x)<0;
当x∈(-1-,-1+)时,f′(x)>0;
当x∈(-1+,+∞)时,f′(x)<0. 4分
所以f(x)在(-∞,-1-),(-1+,+∞)单调递减,在(-1-,-1+)单调递增. 5分
(2)f(x)=(1+x)(1-x)ex.
当a≥1时,设函数h(x)=(1-x)ex,h′(x)=-xex<0(x>0),因此h(x)在[0,+∞)单调递减.而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x
+1≤ax+1. 8分
当0(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.
10分
当a≤0时,取x0=,则x0∈(0,1),f(x0)>(1-x0)(1+x0)2=1≥ax0+1. 11分
综上,a的取值范围是[1,+∞). 12分
[阅卷者说]
易错点
防范措施
函数h(x)与函数g(x)的构造
认真分析不等式的结构特征,通过构造h(x),利用不等式的性质,证明命题成立,通过构造g(x),为举反例说明命题不成立创造了条件
[规律方法] 1.求单调区间的一般步骤
(1)求定义域.
(2)求f′(x),令f′(x)>0,求出f(x)的增区间;令f′(x)<0,求出f(x)的减区间.
(3)写出结论.
2.恒成立问题的三种解法
(1)分离参数,化为最值问题求解.
(2)构造函数,分类讨论,如f(x)≥g(x),即F(x)=f(x)-g(x),求F(x)min≥0.
(3)转变主元,选取适当的主元,可使问题简化.
[跟踪训练] 设函数f(x)=e2x-aln x.
(1)讨论f(x)的导函数f′(x)零点的个数;
(2)证明:当a>0时,f(x)≥2a+aln.
【导学号:79140097】
[解] (1)f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).
当a≤0时,f′(x)>0,f′(x)没有零点;
当a>0时,设u(x)=e2x,v(x)=-,
因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,
所以f′(x)在(0,+∞)上单调递增.
又f′(a)>0,假设存在b满足00时,f′(x)存在唯一零点.
(2)证明:由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;
当x∈(x0,+∞)时,f′(x)>0.
故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).
由于2e-=0,所以f(x0)=+2ax0+aln≥2a+aln .
故当a>0时,f(x)≥2a+aln .