- 516.50 KB
- 2021-06-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第4讲 直线与圆、圆与圆的位置关系
1.直线与圆的位置关系
设直线l:Ax+By+C=0(A2+B2≠0),
圆:(x-a)2+(y-b)2=r2(r>0),
d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.
方法位置关系
几何法
代数法
相交
d0
相切
d=r
Δ=0
相离
d>r
Δ<0
2.圆与圆的位置关系
设圆O1:(x-a1)2+(y-b1)2=r(r1>0),
圆O2:(x-a2)2+(y-b2)2=r(r2>0).
方法位置关系
几何法:圆心距d与r1,r2的关系
代数法:两圆方程联立组成方程组的解的情况
外离
d>r1+r2
无解
外切
d=r1+r2
一组实数解
相交
|r1-r2|1,即>1,解得k∈(-,).
【答案】 (1)B (2)k∈(-,)
若将本例(1)的条件改为“点M(a,b)在圆O:x2+y2=1上”,则直线ax+by=1与圆O的位置关系如何?
解:由点M在圆上,得a2+b2=1,所以圆心O到直线ax+by=1的距离d==1,则直线与圆O相切.
判断直线与圆的位置关系常用的方法
[提醒] 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
[通关练习]
1.直线xsin θ+ycos θ=1+cos θ与圆x2+(y-1)2=的位置关系是( )
A.相离 B.相切
C.相交 D.以上都有可能
解析:选A.因为圆心到直线的距离d==1>,所以直线与圆相离.
2.(2018·聊城模拟)圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点的个数为( )
A.1 B.2
C.3 D.4
解析:选C.因为圆心到直线的距离为=2,又因为圆的半径为3,所以直线与圆相交,由数形结合知,圆上到直线的距离为1的点有3个.
圆的切线与弦长问题(高频考点)
圆的切线与弦长问题,是近年来高考的一个热点,多以选择题、填空题的形式呈现,多为中、低档题目.高考对圆的切线及弦长问题的考查主要有以下三个命题角度:
(1)求圆的切线方程;
(2)求弦长及切线长;
(3)由弦长及切线问题求参数.
[典例引领]
角度一 求圆的切线方程
过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )
A.2x+y-5=0 B.2x+y-7=0
C.x-2y-5=0 D.x-2y-7=0
【解析】 因为过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,
所以点(3,1)在圆(x-1)2+y2=r2上,
因为圆心与切点连线的斜率k==,
所以切线的斜率为-2,则圆的切线方程为y-1=-2(x-3),即2x+y-7=0.故选B.
【答案】 B
角度二 求弦长及切线长
(1)若a,b,c是△ABC三个内角的对边,且csin C=3asin A+3bsin B,则直线l:ax-by+c=0被圆O:x2+y2=12所截得的弦长为( )
A.4 B.2
C.6 D.5
(2)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.
【解析】 (1)因为==.
故由csin C=3asin A+3bsin B可得c2=3(a2+b2).
圆O:x2+y2=12的圆心为O(0,0),半径为r=2,圆心O到直线l的距离d==,所以直线l被圆O所截得的弦长为2=2=6,故选C.
(2)由于直线x+ay-1=0是圆C:x2+y2-4x-2y+1=0的对称轴,所以圆心C(2,1)在直线x+ay-1=0上,所以2+a-1=0,所以a=-1,所以A(-4,-1).
所以|AC|2=36+4=40.又r=2,所以|AB|2=40-4=36.所以|AB|=6.
【答案】 (1)C (2)6
角度三 由弦长及切线问题求参数
(2016·高考全国卷Ⅰ)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为________.
【解析】 圆C的方程可化为x2+(y-a)2=a2+2,可得圆心的坐标为C(0,a),半径r=,所以圆心到直线x-y+2a=0的距离为=,所以+()2=()2,解得a2=2,所以圆C的半径为2,所以圆C的面积为4π.
【答案】 4π
(1)求直线被圆截得的弦长的常用方法
①几何法:用圆的几何性质求解,运用弦心距、半径及弦的一半构成的直角三角形,计算弦长|AB|=2.
②代数法:联立直线与圆的方程得方程组,消去一个未知数得一元二次方程,再利用根与系数的关系结合弦长公式求解,其公式为|AB|=|x1-x2|.
(2)圆的切线方程的求法
①几何法:设切线方程为y-y0=k(x-x0),利用点到直线的距离公式表示出圆心到切线的距离d,然后令d=r,进而求出k.
②代数法:设切线方程为y-y0=k(x-x0),与圆的方程组成方程组,消元后得到一个一元二次方程,然后令判别式Δ=0进而求得k.
[通关练习]
1.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是( )
A.2x+y+5=0或2x+y-5=0
B.2x+y+=0或2x+y-=0
C.2x-y+5=0或2x-y-5=0
D.2x-y+=0或2x-y-=0
解析:选A.设直线方程为2x+y+c=0,由直线与圆相切,得d==,c=±5,所以所求方程为2x+y+5=0或2x+y-5=0.
2.(2018·洛阳市第一次统一考试)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“|AB|=”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A.依题意,注意到|AB|==等价于圆心O到直线l的距离等于,即有=,k=±1.因此,“k=1”是“|AB|=”的充分不必要条件,选A.
3.(2016·高考全国卷Ⅲ)已知直线l:mx+y+3m-=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=2,则|CD|=________.
解析:设圆心到直线l:mx+y+3m-=0的距离为d,则弦长|AB|=2=2,得d=3,即=3,解得m=-,则直线l:x-y+6=0,数形结合可得|CD|==4.
答案:4
圆与圆的位置关系
[典例引领]
(1)已知圆C1:(x-a)2+(y+2)2=4与圆C2:(x+b)2+(y+2)2=1相外切,则ab的最大值为( )
A. B.
C. D.2
(2)两圆C1:x2+y2+4x+y+1=0,C2:x2+y2+2x+2y+1=0相交于A、B两点,则|AB|=________.
【解析】 (1)由圆C1与圆C2相外切,可得=2+1=3,即(a+b)2=a2+2ab+b2=9,根据基本不等式可知9=a2+2ab+b2≥2ab+2ab=4ab,即ab≤,当且仅当a=b时,等号成立.故选C.
(2)由(x2+y2+4x+y+1)-(x2+y2+2x+2y+1)=0得弦AB所在直线方程为2x-y=0.
圆C2的方程即为(x+1)2+(y+1)2=1,
圆心C2(-1,-1),半径r2=1.
圆心C2到直线AB的距离
d==.
所以|AB|=2=2=.
【答案】 (1)C (2)
若本例(1)条件中“外切”变为“内切”,求ab的最大值.
解:由C1与C2内切,
得 =1.
即(a+b)2=1, 又ab≤=,
当且仅当a=b时等号成立,故ab的最大值为.
(1)几何法判断圆与圆的位置关系的步骤
①确定两圆的圆心坐标和半径;
②利用平面内两点间的距离公式求出圆心距d,并求r1+r2,|r1-r2|;
③比较d,r1+r2,|r1-r2|的大小,然后写出结论.
(2)两圆公共弦长的求法
两圆公共弦长,先求出公共弦所在直线的方程,在其中一圆中,由弦心距d,半弦长,半径r所在线段构成直角三角形,利用勾股定理求解.
[通关练习]
1.圆C1:(x-m)2+(y+2)2=9与圆C2:(x+1)2+(y-m)2=4外切,则m的值为( )
A.2 B.-5
C.2或-5 D.不确定
解析:选C.由C1(m,-2),r1=3;C2(-1,m),r2=2;
则两圆心之间的距离为|C1C2|==2+3=5,
解得m=2或-5.故选C.
2.(2018·河南郑州模拟)若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________.
解析:⊙O1与⊙O在A处的切线互相垂直,如图,可知两切线分别过另一圆的圆心,所以O1A⊥OA.
又因为|OA|=,|O1A|=2,
所以|OO1|=5.又A,B关于OO1所在直线对称,
所以AB长为Rt△OAO1斜边上的高的2倍.
所以|AB|=2 ×=4.
答案:4
解决有关弦长问题的两种方法
(1)几何法:直线被圆截得的半弦长、弦心距d和圆的半径r构成直角三角形,且r2=+d2;
(2)代数法:联立直线方程和圆的方程,消元转化为关于x的一元二次方程,由根与系数的关系即可求得弦长|AB|=|x1-x2|=·或|AB|=|y1-y2|=·(k≠0).
求过一点的圆的切线方程时,首先要判断此点是否在圆上,然后设出切线方程.注意:斜率不存在的情形.
易错防范
(1)求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.
(2)过圆上一点作圆的切线有且只有一条:过圆外一点作圆的切线有且只有两条,若仅求得一条,除了考虑运算过程是否正确外,还要考虑斜率不存在的情况,以防漏解.
1.(2018·安徽江南十校联考)直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是( )
A.[-,] B.[-2,2]
C.[--1,-1] D.[-2-1,2-1]
解析:选D.圆C的标准方程为(x-2)2+(y-1)2=4,圆心为(2,1),半径为2,
圆心到直线的距离d==,若直线l与圆C恒有公共点,则≤2,解得-2-1≤m≤2-1,故选D.
2.若直线l:y=kx+1(k<0)与圆C:x2+4x+y2-2y+3=0相切,则直线l与圆D:(x-2)2+y2=3的位置关系是( )
A.相交 B.相切
C.相离 D.不确定
解析:选A.因为圆C的标准方程为(x+2)2+(y-1)2=2,所以其圆心坐标为(-2,1),半径为,
因为直线l与圆C相切.
所以=,解得k=±1,
因为k<0,所以k=-1,
所以直线l的方程为x+y-1=0.圆心D(2,0)到直线l的距离d==<,所以直线l与圆D相交.
3.已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是( )
A.{1,-1} B.{3,-3}
C.{1,-1,3,-3} D.{5,-5,3,-3}
解析:选C.因为两圆有且只有一个公共点,所以两个圆内切或外切,内切时,|a|=1,外切时,|a|=3,所以实数a的取值集合是{1,-1,3,-3}.
4.圆C1:x2+y2+2x+2y-2=0与圆C2:x2+y2-4x-2y+4=0的公切线有( )
A.1条 B.2条
C.3条 D.4条
解析:选D.圆C1:(x+1)2+(y+1)2=4,
所以圆心C1(-1,-1),半径长r1=2;
圆C2:(x-2)2+(y-1)2=1,
所以圆心C2(2,1),半径长r2=1.
所以d==,r1+r2=3,
所以d>r1+r2,所以两圆外离,所以两圆有4条公切线.
5.(2018·兰州市诊断考试)已知圆C:(x-)2+(y-1)2=1和两点A(-t,0),B(t,0),(t>0),若圆C上存在点P,使得∠APB=90°,则当t取得最大值时,点P的坐标是( )
A. B.
C. D.
解析:选D.设P(a,b)为圆上一点,由题意知,·=0,即(a+t)(a-t)+b2=0,a2-t2+b2=0,所以t2=a2+b2=|OP|2,|OP|max=2+1=3,即t的最大值为3,此时kOP=,OP所在直线的倾斜角为30°,所以点P的纵坐标为,横坐标为3×=,即P.
6.过原点且与直线x-y+1=0平行的直线l被圆x2+(y-)2=7所截得的弦长为________.
解析:由题意可得l的方程为x-y=0,因为圆心(0,)到l的距离d==1,所以所求弦长=2=2=2.
答案:2
7.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.
解析:因为∠AOB=90°,所以点O在圆C上.设直线2x+y-4=0与圆C相切于点D,则点C与点O间的距离等于它到直线2x+y-4=0的距离,所以点C在以O为焦点,以直线2x+y-4=0为准线的抛物线上,所以当且仅当O,C,D共线时,圆的直径最小为|OD|.又|OD|==,所以圆C的最小半径为,所以圆C面积的最小值为π=π.
答案:π
8.如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.则圆C在点B处的切线在x轴上的截距为________.
解析:如图,先求出点B的坐标,进而求出圆C在点B处的切线方程,再求切线在x轴上的截距.
令(x-1)2+(y-)2=2中的x=0,解得y=±1,故B(0,+1).直线BC的斜率为=-1,故切线的斜率为1,切线方程为y=x++1.令y=0,解得x=--1,故所求截距为--1.
答案:--1
9.已知圆C:(x-1)2+(y+2)2=10,求满足下列条件的圆的切线方程.
(1)过切点A(4,-1);
(2)与直线l2:x-2y+4=0垂直.
解:(1)因为kAC==,所以过切点A(4,-1)的切线斜率为-3,所以过切点A(4,-1)的切线方程为y+1=-3(x-4),即3x+y-11=0.
(2)设切线方程为2x+y+m=0,则=,所以m=±5,所以切线方程为2x+y±5=0.
10.圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).
(1)若圆O1与圆O2外切,求圆O2的方程;
(2)若圆O1与圆O2相交于A,B两点,且|AB|=2,求圆O2的方程.
解:(1)因为圆O1的方程为x2+(y+1)2=4,
所以圆心O1(0,-1),半径r1=2.
设圆O2的半径为r2,由两圆外切知|O1O2|=r1+r2.
又|O1O2|==2,
所以r2=|O1O2|-r1=2-2.
所以圆O2的方程为(x-2)2+(y-1)2=12-8.
(2)设圆O2的方程为(x-2)2+(y-1)2=r,
又圆O1的方程为x2+(y+1)2=4,
相减得AB所在的直线方程为4x+4y+r-8=0.
设线段AB的中点为H,
因为r1=2,所以|O1H|==.
又|O1H|==,
所以=,解得r=4或r=20.
所以圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.
1.(2018·安徽芜湖六校联考)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在l上.若圆C上存在点M,使MA=2MO,则圆心C的横坐标a的取值范围是( )
A. B.[0,1]
C. D.
解析:选A.因为圆心在直线y=2x-4上,
所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.
设点M(x,y),因为MA=2MO,所以=2,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以点M在以D(0,-1)为圆心,2为半径的圆上.
由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤≤3.
由≥1得5a2-12a+8≥0,解得a∈R;
由≤3得5a2-12a≤0,解得0≤a≤.
所以点C的横坐标a的取值范围为.故选A.
2.(2018·广东省五校协作体第一次诊断考试)两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则+的最小值为________.
解析:两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0配方得,(x+a)2+y2=4,x2+(y-2b)2=1,依题意得两圆相外切,故=1+2=3,即a2+4b2=9,+==+++≥+2=1,当且仅当=,即a2=2b2时等号成立,故+的最小值为1.
答案:1
3.(2017·高考全国卷Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
解:(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.
由可得y2-2my-4=0,则y1y2=-4.
又x1=,x2=,故x1x2==4.
因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.
(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.
故圆心M的坐标为(m2+2,m),圆M的半径
r=.
由于圆M过点P(4,-2),因此·=0,
故(x1-4)(x2-4)+(y1+2)(y2+2)=0,
即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.
由(1)可得y1y2=-4,x1x2=4.
所以2m2-m-1=0,解得m=1或m=-.
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.
当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为,圆M的半径为,圆M的方程为+=.
4.(2018·湖南东部六校联考)已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的右上方.
(1)求圆C的方程;
(2)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在定点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.
解:(1)设圆心C(a,0)(a>-),则=2⇒a=0或a=-5(舍).所以圆C:x2+y2=4.
(2)当直线AB⊥x轴时,x轴平分∠ANB,此时N点的横坐标恒大于0即可.
当直线AB的斜率存在时,设直线AB的方程为y=k(x-1),N(t,0),A(x1,y1),B(x2,y2),
由得,(k2+1)x2-2k2x+k2-4=0,
所以x1+x2=,x1x2=.若x轴平分∠ANB,则kAN=-kBN⇒+=0⇒+=0⇒2x1x2-(t+1)(x1+x2)+2t=0⇒-+2t=0⇒t=4,
所以当点N为(4,0)时,能使得∠ANM=∠BNM总成立.