- 385.08 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.相互独立事件
(1)设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.
(2)若A与B相互独立,则P(B|A)=P(B),
P(AB)=P(A)P(B|A)=P(A)P(B).
(3)若A与B相互独立,则A与,与B,与也都相互独立.
2.二项分布
(1)一般地,在相同条件下重复做的几次试验称为n次独立重复试验.
(2)一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Cpk(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.
3.两点分布与二项分布的均值、方差
(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).
(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)“互斥”与“相互独立”都是描述的两个事件间的关系.( √ )
(2)相互独立事件就是互斥事件.( × )
(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × )
(4)二项分布是一个概率分布,其公式相当于(a+b)n二项展开式的通项公式,其中a=p,b=1-p.( × )
1.甲、乙两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )
A. B. C. D.
答案 B
解析 设事件A:甲实习生加工的零件为一等品;
事件B:乙实习生加工的零件为一等品,
则P(A)=,P(B)=,
所以这两个零件中恰有一个一等品的概率为
P(A)+P(B)=P(A)P()+P()P(B)
=×(1-)+(1-)×=.
2.(教材改编)小王通过英语听力测试的概率是,他连续测试3次,那么其中恰有1次获得通过的概率是( )
A. B. C. D.
答案 A
解析 所求概率P=C·()1·(1-)3-1=.
3.(教材改编)国庆节放假,甲去北京旅游的概率为,乙去北京旅游的概率为,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.
答案
解析 记在国庆期间“甲去北京旅游”为事件A,“乙去北京旅游”为事件B,又P( )=P()·P()=[1-P(A)][1-P(B)]=(1-)(1-)=,
“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”,故所求概率为1-P( )=1-=.
4.(教材改编)抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.
答案
解析 抛掷两枚骰子,当两枚骰子不出现5点和6点时的概率为×=,所以至少有一次出现5点或6点的概率为1-=,用X表示10次试验中成功的次数,则X~B(10,),E(X)=10×=.
题型一 相互独立事件的概率
例1 (2016·青岛模拟)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:
乘坐里程x(单位:km)
0