- 195.36 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
§1.2 命题与量词、基本逻辑联结词
最新考纲
考情考向分析
1.理解命题的概念.
2.了解逻辑联结词“或”“且”“非”的含义.
3.理解全称量词和存在量词的意义.
4.能正确地对含有一个量词的命题进行否定.
逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为选择、填空题,低档难度.
1.命题的概念
能够判断真假的语句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.
2.全称量词与全称命题
(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.
(2)全称命题:含有全称量词的命题.
(3)全称命题的符号表示:
形如“对M中的所有x,p(x)”的命题,用符号简记为“∀x∈M,p(x)”.
3.存在量词与存在性命题
(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.
(2)存在性命题:含有存在量词的命题.
(3)存在性命题的符号表示:
形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).
(4)全称命题与存在性命题的否定
命题
命题的否定
∀x∈M,p(x)
∃x∈M,綈p(x)
∃x∈M,q(x)
∀x∈M,綈q(x)
4.基本逻辑联结词
(1)命题中的“且”、“或”、“非”叫做逻辑联结词.
(2)命题真值表
p
q
p∧q
p∨q
綈p
真
真
真
真
假
假
真
假
真
真
真
假
假
真
假
假
假
假
假
真
知识拓展
1.含有逻辑联结词的命题真假的判断规律
(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.
(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.
(3)綈p:与p的真假相反,即一真一假,真假相反.
2.含有一个量词的命题的否定的规律是“改量词,否结论”.
3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)命题“3≥2”是真命题.( √ )
(2)命题p和綈p不可能都是真命题.( √ )
(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.( √ )
(4)“全等三角形的面积相等”是特称命题.( × )
(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.( × )
题组二 教材改编
2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为( )
A.1 B.2
C.3 D.4
答案 B
解析 p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.
3.命题“正方形都是矩形”的否定是_________________________________________.
答案 存在一个正方形,这个正方形不是矩形
题组三 易错自纠
4.命题“全等三角形的面积一定都相等”的否定是( )
A.全等三角形的面积不一定都相等
B.不全等三角形的面积不一定都相等
C.存在两个不全等三角形的面积相等
D.存在两个全等三角形的面积不相等
答案 D
解析 命题是省略量词的全称命题,易知选D.
5.下列命题中, 为真命题的是( )
A.∀x∈R,-x2-1<0
B.∃x∈R,x2+x=-1
C.∀x∈R,x2-x+>0
D.∃x∈R,x2+2x+2<0
答案 A
6.若“∀x∈,tan x≤m”是真命题,则实数m的最小值为________.
答案 1
解析 ∵函数y=tan x在上是增函数,
∴ymax=tan =1.
依题意知,m≥ymax,即m≥1.
∴m的最小值为1.
题型一 含有逻辑联结词的命题的真假判断
1.设命题p:函数y=log2(x2-2x)的单调增区间是[1,+∞),命题q:函数y=的值域为(0,1),则下列命题是真命题的为( )
A.p∧q B.p∨q
C.p∧(綈q) D.綈q
答案 B
解析 函数y=log2(x2-2x)的单调增区间是(2,+∞),所以命题p为假命题.
由3x>0,得0<<1,所以函数y=的值域为(0,1),故命题q为真命题.
所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q为假命题.故选B.
2.(2017·山东)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是( )
A.p∧q B.p∧(綈q)
C.(綈p)∧q D.(綈p)∧(綈q)
答案 B
解析 ∵x>0,∴x+1>1,∴ln(x+1)>ln 1=0.
∴命题p为真命题,∴綈p为假命题.
∵a>b,取a=1,b=-2,而12=1,(-2)2=4,
此时a2<b2,
∴命题q为假命题,∴綈q为真命题.
∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.
3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:
①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.
其中正确的是________.(填序号)
答案 ②
解析 命题p是假命题,这是因为α与γ也可能相交;命题q也是假命题,这两条直线也可能异面,相交.
思维升华 “p∨q”“p∧q”“綈p”等形式命题真假的判断步骤
(1)确定命题的构成形式;
(2)判断其中命题p、q的真假;
(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.
题型二 含有一个量词的命题
命题点1 全称命题、存在性命题的真假
典例 (2017·韶关二模)下列命题中的假命题是( )
A.∀x∈R,2x-1>0 B.∀x∈N+,(x-1)2>0
C.∃x∈R,lg x<1 D.∃x∈R,tan x=2
答案 B
解析 当x∈N+时,x-1∈N,可得(x-1)2≥0,当且仅当x=1时取等号,故B不正确;易知A,C,D正确,故选B.
命题点2 含一个量词的命题的否定
典例 (1)命题“∀x∈R,x>0”的否定是( )
A.∃x∈R,x<0 B.∀x∈R,x≤0
C.∀x∈R,x<0 D.∃x∈R,x≤0
答案 D
解析 全称命题的否定是存在性命题,“>”的否定是“≤”.
(2)(2017·河北五个一名校联考)命题“∃x∈R,1<f(x)≤2”的否定形式是( )
A.∀x∈R,1<f(x)≤2
B.∃x∈R,1<f(x)≤2
C.∃x∈R,f(x)≤1或f(x)>2
D.∀x∈R,f(x)≤1或f(x)>2
答案 D
解析 存在性命题的否定是全称命题,原命题的否定形式为“∀x∈R,f(x)≤1或f(x)>2”.
思维升华 (1)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每一个元素x,证明p(x)成立;要判断存在性命题是真命题,只要在限定集合内找到一个x=x0,使p(x0)成立.
(2)对全称(存在性)命题进行否定的方法
①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词;
②对原命题的结论进行否定.
跟踪训练 (1)下列命题中的真命题是( )
A.∃x∈R,使得sin x+cos x=
B.∀x∈(0,+∞),ex>x+1
C.∃x∈(-∞,0),2x<3x
D.∀x∈(0,π),sin x>cos x
答案 B
解析 ∵sin x+cos x=sin≤<,故A错误;设f(x)=ex-x-1,则f′(x)=ex-1,
∴f(x)在(0,+∞)上为增函数,又f(0)=0,
∴∀x∈(0,+∞),f(x)>0,
即ex>x+1,故B正确;
当x<0时,y=2x的图象在y=3x的图象上方,故C错误;∵当x∈时,sin x0
C.∀x∈R,ex-x-1>0
D.∀x∈R,ex-x-1≥0
答案 C
解析 根据全称命题与存在性命题的否定关系,可得綈p为“∀x∈R,ex-x-1>0”,故选C.
题型三 含参命题中参数的取值范围
典例 (1)已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若p∧q是真命题,则实数a的取值范围是________________.
答案 [-12,-4]∪[4,+∞)
解析 若命题p是真命题,则Δ=a2-16≥0,
即a≤-4或a≥4;若命题q是真命题,
则-≤3,即a≥-12.
∵p∧q是真命题,∴p,q均为真,
∴a的取值范围是[-12,-4]∪[4,+∞).
(2)已知f(x)=ln(x2+1),g(x)=x-m,若对∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________________.
答案
解析 当x∈[0,3]时,f(x)min=f(0)=0,当x∈[1,2]时,
g(x)min=g(2)=-m,由f(x)min≥g(x)min,
得0≥-m,所以m≥.
引申探究
本例(2)中,若将“∃x2∈[1,2]”改为“∀x2∈[1,2]”,其他条件不变,则实数m的取值范围是________________.
答案
解析 当x∈[1,2]时,g(x)max=g(1)=-m,
由f(x)min≥g(x)max,得0≥-m,
∴m≥.
思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.
跟踪训练 (1)已知命题“∃x∈R,使2x2+(a-1)x+≤0”是假命题,则实数a的取值范围是( )
A.(-∞,-1) B.(-1,3)
C.(-3,+∞) D.(-3,1)
答案 B
解析 原命题的否定为∀x∈R,2x2+(a-1)x+>0,由题意知,其为真命题,即Δ=(a-1)2-4×2×<0,则-2<a-1<2,即-1<a<3.
(2)已知p:∃x∈R,mx2+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围是( )
A.[2,+∞) B.(-∞,-2]
C.(-∞,-2]∪[2,+∞) D.[-2,2]
答案 A
解析 依题意知,p,q均为假命题.当p是假命题时,mx2+1>0恒成立,则有m≥0;当q是假命题时,则有Δ=m2-4≥0,m≤-2或m≥2.因此由p,q均为假命题,
得即m≥2.
常用逻辑用语
考点分析
有关命题及其真假判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系.
一、命题的真假判断
典例1 (1)(2017·江西红色七校联考)已知函数f(x)=给出下列两个命题:命题p:∃m∈(-∞,0),方程f(x)=0有解,命题q:若m=,则f(f(-1))=0,则下列命题为真命题的是( )
A.p∧q B.(綈p)∧q
C.p∧(綈q) D.(綈p)∧(綈q)
(2)(2018届全国名校大联考)已知命题p:∀x∈R,3x<5x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( )
A.p∧q B.(綈p)∧q
C.p∧(綈q) D.(綈p)∧(綈q)
解析 (1)因为3x>0,当m<0时,m-x2<0,
所以命题p为假命题;
当m=时,因为f(-1)=3-1=,
所以f(f(-1))=f=-2=0,
所以命题q为真命题,
逐项检验可知,只有(綈p)∧q为真命题,故选B.
(2)若x=0,则30=50=1,∴p是假命题,
∵方程x3=1-x2有解,∴q是真命题,
∴(綈p)∧q是真命题.
答案 (1)B (2)B
二、求参数的取值范围
典例2 (1)已知命题p:∀x∈[0,1],a≥ex,命题q:∃x∈R,x2+4x+a=0,若命题“p∧q”是真命题,则实数a的取值范围是__________.
(2)已知函数f(x)=x+,g(x)=2x+a,若∀x1∈,∃x2∈[2,3]使得f(x1)≥g(x2),则实数a的取值范围是________.
解析 (1)命题“p∧q”是真命题,p和q均是真命题.
当p是真命题时,a≥(ex)max=e;
当q为真命题时,Δ=16-4a≥0,a≤4,
所以a∈[e,4].
(2)∵x∈,∴f(x)≥2 =4,当且仅当x=2时,f(x)min=4,当x∈[2,3]时,g(x)min=22+a=4+a,依题意知f(x)min≥g(x)min,即4≥a+4,∴a≤0.
答案 (1)[e,4] (2)(-∞,0]
1.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“a2>b2”是“a>b”的充要条件,则下列判断正确的是( )
A.p∨q为真 B.p∧q为真
C.p真q假 D.p∨q为假
答案 D
解析 ∵p假,q假,∴p∨q为假.
2.设命题p:函数y=sin 2x的最小正周期为;命题q:函数y=cos x的图象关于直线x=对称,则下列判断正确的是( )
A.p为真 B.綈q为假
C.p∧q为假 D.p∨q为真
答案 C
解析 函数y=sin 2x的最小正周期为=π,故命题p为假命题;x=不是y=cos x的对称轴,故命题q为假命题,故p∧q为假.故选C.
3.(2018·唐山一模)已知命题p:∃x∈N,x30恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为________.
答案 0
解析 ∵x2-3x+2=0的判别式Δ=(-3)2-4×2>0,
∴当x>2或x<1时,x2-3x+2>0才成立,
∴①为假命题;
当且仅当x=±时,x2=2,
∴不存在x∈Q,使得x2=2,∴②为假命题;
对∀x∈R,x2+1≠0,∴③为假命题;
4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,
即当x=1时,4x2=2x-1+3x2成立,
∴④为假命题.
∴①②③④均为假命题.
故真命题的个数为0.
12.已知命题“∀x∈R,x2-5x+a>0”的否定为假命题,则实数a的取值范围是
____________.
答案
解析 由“∀x∈R,x2-5x+a>0”的否定为假命题,可知原命题必为真命题,即不等式x2-5x+a>0对任意实数x恒成立.设f(x)=x2-5x+a,则其图象恒在x轴的上方,故Δ=25-4×a<0,
解得a>,即实数a的取值范围为.
13.已知命题p:-40,若綈p是綈q的充分不必要条件,则实数a的取值范围是______.
答案 [-1,6]
解析 p:-40等价于20,则命题“p∧(綈q)”是假命题;
②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3;
③命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”.
其中正确结论的序号为________.
答案 ①③
解析 ①中命题p为真命题,命题q为真命题,
所以p∧(綈q)为假命题,故①正确;
②当b=a=0时,有l1⊥l2,故②不正确;
③正确,所以正确结论的序号为①③.
15.已知命题p:∃x∈R,ex-mx=0,命题q:∀x∈R,x2+mx+1≥0,若p∨(綈q)为假命题,则实数m的取值范围是________.
答案 [0,2]
解析 若p∨(綈q)为假命题,则p假q真.
由ex-mx=0,可得m=,x≠0,
设f(x)=,x≠0,则
f′(x)==,
当x>1时,f′(x)>0,函数f(x)=在(1,+∞)上是单调递增函数;当01,x≥2).
(1)若∃x∈[2,+∞),使f(x)=m成立,则实数m的取值范围为________________;
(2)若∀x1∈[2,+∞),∃x2∈[2, +∞),使得f(x1)=g(x2),则实数a的取值范围为________________.
答案 (1)[3,+∞) (2)(1,]
解析 (1)因为f(x)==x+=x-1++1≥2+1=3,当且仅当x=2时等号成立,所以若∃x∈[2,+∞),使f(x)=m成立,则实数m的取值范围为[3,+∞).
(2)因为当x≥2时,f(x)≥3,g(x)≥a2,若∀x1∈[2,+∞),∃x2∈[2,+∞),使得f(x1)=g(x2),
则 解得a∈(1,].