- 407.89 KB
- 2021-06-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.数列的定义
按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.
2.数列的分类
分类原则
类型
满足条件
按项数分类
有穷数列
项数有限
无穷数列
项数无限
按项与项间
的大小关系
分类
递增数列
an+1 > an
其中n∈N*
递减数列
an+1 < an
常数列
an+1=an
摆动数列
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列
3.数列的表示法
数列有三种表示法,它们分别是列表法、图象法和解析法.
4.数列的通项公式
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
【知识拓展】
1.若数列{an}的前n项和为Sn,通项公式为an,
则an=
2.在数列{an}中,若an最大,则
若an最小,则
3.数列与函数的关系
数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)所有数列的第n项都能使用公式表达.( × )
(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ )
(3)1,1,1,1,…,不能构成一个数列.( × )
(4)任何一个数列不是递增数列,就是递减数列.( × )
(5)如果数列{an}的前n项和为Sn,则对∀n∈N*,都有an+1=Sn+1-Sn.( √ )
1.(教材改编)下列有四种说法,其中正确的说法是 .(填序号)
①数列a,a,a,…是无穷数列;
②数列0,-1,-2,-3,…不一定是递减数列;
③数列{f(n)}可以看作是一个定义域为正整数N*或它的有限子集{1,2,…,n}的函数值;
④已知数列{an},则数列{an+1-an}也是一个数列.
答案 ①②④
解析 题中①④显然正确;对于②,数列只给出前四项,后面的项是不确定的,所以不一定是递减数列;对于③,数列可以看作是一个定义域为正整数N*或它的有限子集{1,2,…,n}的函数,当自变量从小到大依次取值时对应的一列函数值,所以③不正确.
2.(教材改编)数列1,2,,,,…中的第26项为 .
答案 2
解析 ∵a1=1=,a2=2=,
a3=,a4=,a5=,
∴an=,
∴a26===2.
3.(教材改编)在数列{an}中,a1=1,an=1+(n≥2),则a5= .
答案
解析 a2=1+=2,a3=1+=1+=,a4=1+=3,a5=1+=.
4.(教材改编)已知数列{an}中,a1=,an+1=1-(n≥2),则a16= .
答案
解析 由题意知a2=1-=-1,a3=1-=2,a4=1-=,∴此数列是以3为周期的周期数列,a16=a3×5+1=a1=.
5.已知数列{an}的前n项和Sn=n2+1,则an= .
答案
解析 当n=1时,a1=S1=2,当n≥2时,
an=Sn-Sn-1=n2+1-[(n-1)2+1]=2n-1,
故an=
题型一 由数列的前几项求数列的通项公式
例1 (1)(2016·南京模拟)数列1,3,6,10,…的通项公式是 .
(2)数列{an}的前4项是,1,,,则这个数列的通项公式是an= .
答案 (1)an= (2)
解析 (1)观察数列1,3,6,10,…可以发现
1=1,
3=1+2,
6=1+2+3,
10=1+2+3+4,
…
第n项为1+2+3+4+…+n=.
∴an=.
(2)数列{an}的前4项可变形为,,,,故an=.
思维升华 由前几项归纳数列通项的常用方法及具体策略
(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.
(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.
根据数列的前几项,写出下列各数列的一个通项公式.
(1)-1,7,-13,19,…;
(2)0.8,0.88,0.888,…;
(3),,-,,-,,….
解 (1)数列中各项的符号可通过(-1)n表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为an=(-1)n(6n-5).
(2)数列变为,,,…,
故an=.
(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的绝对值的分子分别比分母小3.
因此把第1项变为-,
原数列化为-,,-,,…,
故an=(-1)n.
题型二 由an与Sn的关系求通项公式
例2 (1)(2016·南通模拟)若数列{an}的前n项和Sn=an+,则{an}的通项公式an= .
答案 (-2)n-1
解析 由Sn=an+,得当n≥2时,Sn-1=an-1+,两式相减,整理得an=-2an-1,又当n=1时,S1=a1=a1+,∴a1=1,∴{an}是首项为1,公比为-2的等比数列,故an=(-2)n-1.
(2)已知下列数列{an}的前n项和Sn,求{an}的通项公式.
①Sn=2n2-3n;②Sn=3n+b.
解 ①a1=S1=2-3=-1,
当n≥2时,an=Sn-Sn-1
=(2n2-3n)-[2(n-1)2-3(n-1)]=4n-5,
由于a1也适合此等式,∴an=4n-5.
②a1=S1=3+b,
当n≥2时,an=Sn-Sn-1=(3n+b)-(3n-1+b)
=2·3n-1.
当b=-1时,a1适合此等式;
当b≠-1时,a1不适合此等式.
∴当b=-1时,an=2·3n-1;
当b≠-1时,an=
思维升华 已知Sn,求an的步骤
(1)当n=1时,a1=S1;
(2)当n≥2时,an=Sn-Sn-1;(3)对n=1时的情况进行检验,若适合n≥2的通项则可以合并;若不适合则写成分段函数形式.
(1)已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为 .
(2)已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则Sn= .
答案 (1)an= (2)()n-1
解析 (1)当n=1时,a1=S1=-1;
当n≥2时,an=Sn-Sn-1=2n-1,
∴an=
(2)由an+1=Sn+1-Sn,得Sn=Sn+1-Sn,
即Sn+1=Sn(n≥1),又S1=a1=1,
所以数列{Sn}是首项为1,公比为的等比数列,
所以Sn=()n-1.
题型三 由数列的递推关系求通项公式
例3 根据下列条件,确定数列{an}的通项公式.
(1)a1=2,an+1=an+ln(1+);
(2)a1=1,an+1=2nan;
(3)a1=1,an+1=3an+2.
解 (1)∵an+1=an+ln(1+),
∴an-an-1=ln(1+)=ln (n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=ln+ln+…+ln +ln 2+2
=2+ln(··…··2)
=2+ln n(n≥2).
又a1=2适合上式,故an=2+ln n(n∈N*).
(2)∵an+1=2nan,∴=2n-1 (n≥2),
∴an=··…··a1
=2n-1·2n-2·…·2·1=21+2+3+…+(n-1)=.
又a1=1适合上式,故an=.
(3)∵an+1=3an+2,∴an+1+1=3(an+1),
又a1=1,∴a1+1=2,
故数列{an+1}是首项为2,公比为3的等比数列,
∴an+1=2·3n-1,故an=2·3n-1-1.
思维升华 已知数列的递推关系求通项公式的典型方法
(1)当出现an=an-1+m时,构造等差数列.
(2)当出现an=xan-1+y时,构造等比数列.
(3)当出现an=an-1+f(n)时,用累加法求解.
(4)当出现=f(n)时,用累乘法求解.
(1)已知数列{an}满足a1=1,an=·an-1(n≥2且n∈N*),则an= .
(2)已知数列{an}的前n项和为Sn,且Sn=2an-1(n∈N*),则a5= .
答案 (1) (2)16
解析 (1)∵an=an-1 (n≥2),
∴an-1=an-2,…,a2=a1.
以上(n-1)个式子相乘得
an=a1···…·==.
当n=1时也满足此等式,∴an=.
(2)当n=1时,S1=2a1-1,∴a1=1.
当n≥2时,Sn-1=2an-1-1,
∴an=Sn-Sn-1=2an-2an-1,∴an=2an-1.
∴{an}是等比数列且a1=1,q=2,
故a5=a1×q4=24=16.
题型四 数列的性质
命题点1 数列的单调性
例4 已知an=,那么数列{an}是 数列.(填“递减”“递增”或“常”)
答案 递增
解析 an=1-,将an看作关于n的函数,n∈N*,易知{an}是递增数列.
命题点2 数列的周期性
例5 数列{an}满足an+1=,a8=2,则a1= .
答案
解析 ∵an+1=,
∴an+1===
==1-
=1-=1-(1-an-2)=an-2,n≥3,
∴周期T=(n+1)-(n-2)=3.
∴a8=a3×2+2=a2=2.
而a2=,∴a1=.
命题点3 数列的最值
例6 若数列{an}的通项an=,则数列{an}中的最大项的值是 .
答案
解析 令f(x)=x+(x>0),运用基本不等式得f(x)≥2,当且仅当x=3时等号成立.因为an=,所以≤,由于n∈N*,不难发现当n=9或n=10时,an=最大.
思维升华 (1)解决数列的单调性问题可用以下三种方法
①用作差比较法,根据an+1-an的符号判断数列{an}是递增数列、递减数列还是常数列.
②用作商比较法,根据(an>0或an<0)与1的大小关系进行判断.
③结合相应函数的图象直观判断.
(2)解决数列周期性问题的方法
先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.
(3)数列的最值可以利用数列的单调性或求函数最值的思想求解.
(1)(2016·哈尔滨模拟)若数列{an}满足an+1=a1=,则数列的第2 015项为 .
(2)设an=-3n2+15n-18,则数列{an}中的最大项的值是 .
答案 (1) (2)0
解析 (1)由已知可得,a2=2×-1=,
a3=2×=,
a4=2×=,
a5=2×-1=,
∴{an}为周期数列且T=4,
∴a2 015=a503×4+3=a3=.
(2)∵an=-32+,由二次函数性质,得当n=2或3时,an最大,最大值为0.
12.解决数列问题的函数思想
典例 (1)数列{an}的通项公式是an=(n+1)·()n,则此数列的最大项是第 项.
(2)若an=n2+kn+4且对于n∈N*,都有an+1>an成立,则实数k的取值范围是 .
思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析.
解析 (1)∵an+1-an
=(n+2)()n+1-(n+1)()n
=()n×,
当n<9时,an+1-an>0,即an+1>an;
当n=9时,an+1-an=0,即an+1=an;
当n>9时,an+1-an<0,即an+1an知该数列是一个递增数列,
又因为通项公式an=n2+kn+4,
所以(n+1)2+k(n+1)+4>n2+kn+4,
即k>-1-2n,又n∈N*,所以k>-3.
答案 (1)9或10 (2)(-3,+∞)
1.数列,-,,-,…的第10项是 .
答案 -
解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{an}的通项公式an=(-1)n+1·,故a10=-.
2.(2016·苏州模拟)已知函数y=f(x)的定义域为R.当x<0,f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)= (n∈N*),则a2 015的值为 .
答案 4 029
解析 根据题意,不妨设f(x)=()x,则a1=f(0)=1,∵f(an+1)=,∴an+1=an+2,∴数列{an}是以1为首项,2为公差的等差数列,∴an=2n-1,
∴a2 015=4 029.
3.已知a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项公式是 .
答案 an=n
解析 ∵an=n(an+1-an),∴=,
∴an=···…···a1
=···…···1=n.
4.若数列{an}满足a1=2,a2=3,an=(n≥3且n∈N*),则a2 018= .
答案 3
解析 由已知a3==,a4==,
a5==,a6==,
a7==2,a8==3,
∴数列{an}具有周期性,T=6,
∴a2 018=a336×6+2=a2=3.
5.数列{an}满足an+an+1=(n∈N*),a2=2,Sn是数列{an}的前n项和,则S21= .
答案
解析 ∵an+an+1=,a2=2,
∴an=
∴S21=11×+10×2=.
6.已知数列{an}的前n项和为Sn,且Sn=2n2-1,则a3= .
答案 10
解析 a3=S3-S2=2×32-1-(2×22-1)=10.
7.数列{an}中,已知a1=1,a2=2,an+1=an+an+2(n∈N*),则a7= .
答案 1
解析 由已知an+1=an+an+2,a1=1,a2=2,
能够计算出a3=1,a4=-1,a5=-2,a6=-1,a7=1.
8.已知数列{an}的前n项和为Sn,Sn=2an-n,则an= .
答案 2n-1
解析 当n=1时,S1=a1=2a1-1,得a1=1,当n≥2时,an=Sn-Sn-1=2an-n-2an-1+(n-1),
即an=2an-1+1,∴an+1=2(an-1+1),
∴数列{an+1}是首项为a1+1=2,公比为2的等比数列,∴an+1=2·2n-1=2n,∴an=2n-1.
*9.(2016·无锡期末)对于数列{an},定义数列{bn}满足bn=an+1-an(n∈N*),且bn+1-bn=1 (n∈N*),a3=1,a4=-1,则a1= .
答案 8
解析 因为b3=a4-a3=-1-1=-2,所以b2=a3-a2=b3-1=-3,所以b1=a2-a1=b2-1=-4,三式相加可得a4-a1=-9,所以a1=a4+9=8.
10.已知数列{an}满足a1=2,an+1=(n∈N*),则该数列的前2 019项的乘积a1·a2·a3·…·a2 019= .
答案 3
解析 由题意可得,a2==-3,a3==-,a4==,a5==2=a1,
∴数列{an}是以4为周期的数列,而2 019=4×504+3,a1a2a3a4=1,
∴前2 019项的乘积为1504·a1a2a3=3.
11.已知数列{an}的前n项和Sn=n2+1,数列{bn}满足bn=,且前n项和为Tn,设cn=T2n+1-Tn.
(1)求数列{bn}的通项公式;
(2)判断数列{cn}的增减性.
解 (1)∵a1=2,an=Sn-Sn-1=2n-1(n≥2).
∴bn=
(2)∵cn=bn+1+bn+2+…+b2n+1
=++…+,
∴cn+1-cn=+-
=-=<0,
∴{cn}是递减数列.
12.已知Sn为正项数列{an}的前n项和,且满足Sn=a+an(n∈N*).
(1)求a1,a2,a3,a4的值;
(2)求数列{an}的通项公式.
解 (1)由Sn=a+an (n∈N*)可得
a1=a+a1,解得a1=1,
S2=a1+a2=a+a2,解得a2=2,
同理,a3=3,a4=4.
(2)Sn=+a, ①
当n≥2时,Sn-1=+a, ②
①-②得(an-an-1-1)(an+an-1)=0.
由于an+an-1≠0,所以an-an-1=1,
又由(1)知a1=1,
故数列{an}为首项为1,公差为1的等差数列,
故an=n.
*13.已知数列{an}中,an=1+(n∈N*,a∈R且a≠0).
(1)若a=-7,求数列{an}中的最大项和最小项的值;
(2)若对任意的n∈N*,都有an≤a6成立,求a的取值范围.
解 (1)∵an=1+(n∈N*,a∈R且a≠0),
又a=-7,∴an=1+(n∈N*).
结合函数f(x)=1+的单调性,
可知1>a1>a2>a3>a4,
a5>a6>a7>…>an>1(n∈N*).
∴数列{an}中的最大项为a5=2,最小项为a4=0.
(2)an=1+=1+,
已知对任意的n∈N*,都有an≤a6成立,
结合函数f(x)=1+的单调性,
可知5<<6,即-10<a<-8.