• 451.00 KB
  • 2021-05-17 发布

高等数学下册 chap2(导数与微分)2导数与微分习题课

  • 27页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
一、主要内容 二、典型例题 导数与微分习题课 求 导 法 则 基本公式 导 数 微 分 关 系 高阶导数 高阶微分 一、主要内容 1 、导数的定义 定义 2. 右导数 : 单侧导数 1. 左导数 : 2 、基本导数公式 (常数和基本初等函数的导数公式) 3 、求导法则 (1) 函数的和、差、积、商的求导法则 (2) 反函数的求导法则 (3) 复合函数的求导法则 (4) 对数求导法 先在方程两边取对数 , 然后利用隐函数的求导方法求出导数 . 适用范围 : (5) 隐函数求导法则 用复合函数求导法则直接对方程两边求导 . (6) 参变量函数的求导法则 4 、高阶导数 记作 二阶导数的导数称为三阶导数 , ( 二阶和二阶以上的导数统称为 高阶导数 ) 5 、 微分的定义 定义 ( 微分的实质 ) 6 、导数与微分的关系 定理 7 、 微分的求法 求法 : 计算函数的导数 , 乘以自变量的微分 . 基本初等函数的微分公式 函数和、差、积、商的微分法则 8 、 微分的基本法则 微分形式的不变性 二、典型例题 例 解 例 解 例 解 两边取对数 例 解 先去掉绝对值 例 解 在 处连续,且 求 例 解 试确定常数 a , b 使 f ( x ) 处处可导,并求 例 解 利用 在 处可导, 即 是否为连续函数 ? 应有 思考 函数 在该区间上存在, 但 也在该区间上连续. 例 则肯定 导函数 注 解 不能断定 在某区间上连续并可导, 显然当 为初等函数是连续的. 但当 不趋向于任何极限. 因此, 例 解 故 例 解 两边取对数