• 64.50 KB
  • 2021-06-16 发布

高中数学必修3教案:7_备课资料(2_3_2 两个变量的线性相关 第2课时)

  • 1页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
备课资料 阅读材料 相关关系的强与弱 ‎ 我们知道,两个变量x、y正(负)相关时,它们就有相同(反)的变化趋势,即当x由小变大时,相应的y有由小(大)变大(小)的趋势,因此可以用回归直线来描述这种关系.与此相关的一个问题是:如何描述x和y之间的这种线性关系的强弱?例如,物理成绩与数学成绩正相关,但数学成绩能够在多大程度上决定物理成绩?这就是相关强弱的问题,类似的还有吸烟与健康的负相关强度、父母身高与子女身高的正相关强度、农作物的产量与施肥量的正相关强度等.‎ ‎ 统计中用相关系数r来衡量两个变量之间线性关系的强弱.若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),则两个变量的相关系数的计算公式为 ‎ r=.‎ ‎ 不相同的相关性可以从散点图上直观地反映出来.图1反映了变量x、y之间很强的线性相关关系,而图2中的两个变量的线性相关程度很弱.‎ ‎ 对于相关系数r,首先值得注意的是它的符号.当r为正时,表明变量x、y正相关;当r为负时,表明变量x、y负相关.反映在散点图上,图1中的变量x、y正相关.这时的r为正,图2中的变量x、y负相关,这时的r为负.‎ ‎ 另一个值得注意的是r的大小.统计学认为,对于变量x、y,如果r∈[-1,-0.75],那么负相关很强;如果r∈[0.75,1],那么正相关很强;如果r∈(-0.75,-0.30]或r∈[0.30,0.75),那么相关性一般;如果r∈[-0.25,0.25],那么相关性较弱.反映在散点图上,图1的r=0.97,这些点有明显的从左下角到右上角沿直线分布趋势,这时用线性回归模型描述两个变量之间的关系效果很好;图2的r=-0.85,这些点也有明显的从左上角到右下角沿直线分布趋势.这时用线性回归模型描述两个变量之间的关系也有好的效果.‎ ‎ 你能试着对自己身边的某个问题,确定两个变量,通过收集数据,计算相关系数,然后分析一下能否用线性回归模型来拟合它们之间的关系吗?‎ ‎ ‎ 图1 图2‎ ‎(设计者:路致芳)‎