- 2.12 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
树德中学高2017级二诊模拟考试数学(理科)试题
第Ⅰ卷(选择题共60分)
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数的定义域为( )
A. B. C. D.
【答案】C
【解析】
【详解】函数的定义域应满足
故选C.
2.复数(i是虚数单位)在复平面内对应的点在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【答案】B
【解析】
【分析】
利用复数的四则运算以及几何意义即可求解.
【详解】解:,
则复数(i是虚数单位)在复平面内对应的点的坐标为:,
位于第二象限.
故选:B.
【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.
3.已知等差数列满足,公差,且成等比数列,则
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
- 24 -
【分析】
先用公差表示出,结合等比数列求出.
【详解】,因为成等比数列,所以,解得.
【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.
4.已知命题:使成立. 则为( )
A. 均成立 B. 均成立
C. 使成立 D. 使成立
【答案】A
【解析】
试题分析:原命题为特称命题,故其否定为全称命题,即.
考点:全称命题.
5.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )
A. B. C. D.
【答案】B
【解析】
试题分析:由题意得,,所以,,所求双曲线方程为.
考点:双曲线方程.
6.函数()的图象的大致形状是( )
- 24 -
A. B. C. D.
【答案】C
【解析】
【分析】
对x分类讨论,去掉绝对值,即可作出图象.
【详解】
故选C.
【点睛】识图常用的方法
(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;
(2)定量计算法:通过定量计算来分析解决问题;
(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.
7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )
- 24 -
A. 12种 B. 24种 C. 36种 D. 48种
【答案】C
【解析】
【分析】
根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.
【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,
剩余的3门全排列,安排在剩下的3个位置,有种,
所以“六艺”课程讲座不同的排课顺序共有种不同的排法.
故选:C.
【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
8.执行如图所示的程序框图,当输出的时,则输入的的值为( )
A. -2 B. -1 C. D.
【答案】B
【解析】
若输入,则执行循环得
- 24 -
结束循环,输出,与题意输出的矛盾;
若输入,则执行循环得
结束循环,输出,符合题意;
若输入,则执行循环得
结束循环,输出,与题意输出的矛盾;
若输入,则执行循环得
结束循环,输出,与题意输出的矛盾;
综上选B.
9.如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )
A. B. C. D.
【答案】D
【解析】
【分析】
先求出球心到四个支点所在球小圆的距离,再加上侧面三角形的高,即可求解.
【详解】设四个支点所在球的小圆的圆心为,球心为,
- 24 -
由题意,球的体积为,即可得球的半径为1,
又由边长为的正方形硬纸,可得圆的半径为,
利用球的性质可得,
又由到底面的距离即为侧面三角形的高,其中高为,
所以球心到底面的距离为.
故选:D.
【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.
10.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为( )
A. 1 B. C. D.
【答案】A
【解析】
【分析】
设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.
【详解】由题意,抛物线的焦点坐标为,
设,
因为,即线段的中点,所以,
- 24 -
所以直线的斜率,
当且仅当,即时等号成立,
所以直线的斜率的最大值为1.
故选:A.
【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.
11.下列命题为真命题的个数是( )(其中,为无理数)
①;②;③.
A. 0 B. 1 C. 2 D. 3
【答案】C
【解析】
【分析】
对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.
【详解】由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;
对于②中,设函数,则,所以函数为单调递增函数,
因为,则
又由,所以,即,所以②不正确;
对于③中,设函数,则,
当时,,函数单调递增,
- 24 -
当时,,函数单调递减,
所以当时,函数取得最大值,最大值为,
所以,即,即,所以是正确的.
故选:C.
【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.
12.在锐角中,,,分别是角,,所对的边,的面积,且满足,则的取值范围是( )
A. B. C. D.
【答案】A
【解析】
【分析】
由正弦定理化简得,解得,进而得到,利用正切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.
【详解】由题意,在锐角中,满足,
由正弦定理可得,即,
可得,所以,即,
所以,所以,则,
所以,可得,
- 24 -
又由的面积,所以,
则
.
故选:A.
【点睛】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.
第Ⅱ卷(非选择题共90分)
二、填空题(本题共4小题,每小题5分,共20分)
13.已知向量=(1,2),=(-3,1),则=______.
【答案】-6
【解析】
【分析】
由可求,然后根据向量数量积的坐标表示可求 .
【详解】∵=(1,2),=(-3,1),∴=(-4,-1),
则 =1×(-4)+2×(-1)=-6
故答案为-6
【点睛】本题主要考查了向量数量积的坐标表示,属于基础试题.
14.设,分别是定义在上的奇函数和偶函数,且,则_________
【答案】1
【解析】
【分析】
令,结合函数的奇偶性,求得,即可求解的值,得到答案.
【详解】由题意,函数分别是上的奇函数和偶函数,且
- 24 -
,
令,可得,
所以.
故答案为:1.
【点睛】本题主要考查了函数奇偶性的应用,其中解答中熟记函数的奇偶性,合理赋值求解是解答的关键,着重考查了推理与运算能力,属于基础题.
15.直线是圆:与圆:公切线,并且分别与轴正半轴,轴正半轴相交于,两点,则的面积为_________
【答案】
【解析】
【分析】
根据题意画出图形,设,利用三角形相似求得的值,代入三角形的面积公式,即可求解.
【详解】如图所示,设,
由与相似,可得,解得,
再由与相似,可得,解得,
由三角形的面积公式,可得的面积为.
故答案为:.
- 24 -
【点睛】本题主要考查了直线与圆的位置关系的应用,以及三角形相似的应用,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.
16.已知函数,令,,若,表示不超过实数的最大整数,记数列的前项和为,则_________
【答案】5
【解析】
【分析】
根据导数的运算,结合数列的通项公式的求法,求得,,,进而得到,再利用放缩法和取整函数的定义,即可求解.
【详解】由题意,函数,且,,
可得,
,
又由,可得为常数列,且,
数列表示首项为4,公差为2的等差数列,所以,
其中数列满足,
所以,
所以,
又由,
所以,
且,
- 24 -
所以数列的前项和为,满足,
所以,
即,
又由表示不超过实数的最大整数,所以.
故答案为:5.
【点睛】本题主要考查了函数的导数的计算,以及等差数列的通项公式,累加法求解数列的通项公式,以及裂项法求数列的和的综合应用,着重考查了分析问题和解答问题的能力,属于中档试题.
三、解答題(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答)
17.已知数列的前项和为,且满足().
(1)求数列的通项公式;
(2)设(),数列的前项和.若对恒成立,求实数,的值.
【答案】(1)(2),.
【解析】
【分析】
(1)根据数列的通项与前n项和的关系式,即求解数列的通项公式;
(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.
【详解】(1)由题意,当时,由,解得;
- 24 -
当时,可得,
即,
显然当时上式也适合,所以数列的通项公式为.
(2)由(1)可得,
所以
.
因为对恒成立,
所以,.
【点睛】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力,属于中档试题.
18.如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
- 24 -
【答案】(1)见证明;(2)
【解析】
【分析】
(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即
(2)以为坐标原点,的方向为轴的正方向,建空间直角坐标系,分别计算各个点坐标,计算平面法向量,利用向量的夹角公式得到直线与平面所成角的正弦值.
【详解】(1)证明:设是中点,连接、,
是的中点,,,
,,, ,
是平行四边形,,
,,,
,,,
由余弦定理得,
,,
,平面,,
;
(2)由(1)得平面,,平面平面,
过点作,垂足为,平面,以为坐标原点,的方向为轴的正方向,建立如图的空间直角坐标系,
- 24 -
则,,,
,
设是平面的一个法向量,则,,
令,则,,
,
直线与平面所成角的正弦值为.
【点睛】本题考查了线面垂直,线线垂直,利用空间直角坐标系解决线面夹角问题,意在考查学生的空间想象能力和计算能力.
19.2018年是中国改革开放的第40周年,为了充分认识新形势下改革开放的时代性,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,并绘制了如图所示的频率分布直方图.
(1)现从年龄在内的人员中按分层抽样的方法抽取8人,再从这8人中随机抽取3人进行座谈,用表示年龄在内的人数,求的分布列和数学期望;
(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有
- 24 -
名市民的年龄在的概率为.当最大时,求的值.
【答案】(1)分布列见解析;;(2)7.
【解析】
【分析】
(1)根据分层抽样的方法判断出年龄在内的人数,可得的可能取值为0,1,2,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望;(2)设年龄在内的人数为,则,设,可得若,则,;若,则,,从而可得结果.
【详解】(1)按分层抽样的方法抽取的8人中,
年龄在内的人数为人,
年龄在内的人数为人,
年龄在内的人数为人.
所以的可能取值为0,1,2,
所以,
,
,
所以的分布列为
0
1
2
- 24 -
(2)设在抽取的20名市民中,年龄在内的人数为,服从二项分布.由频率分布直方图可知,年龄在内的频率为,
所以,
所以 .
设 ,
若,则,;
若,则,.
所以当时,最大,即当最大时,.
【点睛】本题主要考查分层抽样的定义、直方图的应用以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.
20.已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.
(1)求椭圆的方程;
(2)若过左焦点斜率为的直线与椭圆交于点为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.
【答案】(1) .
(2) 为定值.过程见解析.
- 24 -
【解析】
分析:(1)焦距说明,用点差法可得=.这样可解得,得椭圆方程;
(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.
详解:(1)由题意可知,设,代入椭圆可得:
,两式相减并整理可得,
,即.
又因为,,代入上式可得,.
又,所以,
故椭圆的方程为.
(2)由题意可知,,当为长轴时,为短半轴,此时
;
否则,可设直线的方程为,联立,消可得,
,
则有:,
- 24 -
所以
设直线方程为,联立,根据对称性,
不妨得,
所以.
故,
综上所述,为定值.
点睛:设直线与椭圆相交于两点,的中点为,则有,证明方法是点差法:即把点坐标代入椭圆方程得,,两式相减,结合斜率公式可得.
21.已知函数.
(1)若函数在上单调递减,求实数的取值范围;
(2)若,求的最大值.
【答案】(1)(2)
【解析】
【分析】
(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;
- 24 -
(2)通过对的导函数分析,确定有唯一零点,则就是的极大值点也是最大值点,计算的值并利用进行化简,从而确定.
【详解】(1)由题意知, 在上恒成立,所以在上恒成立.
令,则,
所以在上单调递增,所以,
所以.
(2)当时,.
则,
令,则,
所以在上单调递减.
由于,,所以存在满足,即.
当时,,;当时,,.
所以在上单调递增,在上单调递减.
所以,
因为,所以,所以,
所以.
【点睛】(1)求函数中字母的范围时,常用的方法有两种:参变分离法、分类讨论法;
- 24 -
(2)当导函数不易求零点时,需要将导函数中某些部分拿出作单独分析,以便先确定导函数的单调性从而确定导函数的零点所在区间,再分析整个函数的单调性,最后确定出函数的最值.
22.在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程以及曲线的直角坐标方程;
(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.
【答案】(1)的极坐标方程为,的直角坐标方程为(2)
【解析】
【分析】
(1)先把曲线的参数方程消参后,转化为普通方程,再利用 求得极坐标方程.将,化为,再利用 求得曲线的普通方程.
(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,,从而求得,再利用求解.
【详解】(1)依题意,曲线,即,
- 24 -
故,即.
因为,故,
即,即.
(2)将代入,得,
将代入,得,
由,得,得,
解得,则.
又,故,
故的面积.
【点睛】本题考查极坐标方程与直角坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论证能力以及数形结合思想,属于中档题.
23.已知函数,记的最小值为.
(Ⅰ)解不等式;
(Ⅱ)若正实数,满足,求证:.
【答案】(Ⅰ)(Ⅱ)见证明
【解析】
【分析】
(Ⅰ)由题意结合不等式的性质零点分段求解不等式的解集即可;
(Ⅱ)首先确定m的值,然后利用柯西不等式即可证得题中的不等式.
【详解】(Ⅰ)①当时,,即,
- 24 -
∴;
②当时,,
∴;
③当时,,即,
∴.
综上所述,原不等式的解集为.
(Ⅱ)∵,
当且仅当时,等号成立.
∴的最小值.
∴,
即,
当且仅当即时,等号成立.
又,∴,时,等号成立.
∴.
【点睛】本题主要考查绝对值不等式的解法,柯西不等式及其应用,绝对值三角不等式求最值的方法等知识,意在考查学生的转化能力和计算求解能力.
- 24 -
- 24 -
相关文档
- 四川省宜宾市叙州区第一中学2019届2021-06-1510页
- 【数学】四川省成都市树德中学20192021-06-158页
- 四川省成都市树德中学2018-2019学2021-06-1523页
- 四川省成都市树德中学2020届高三上2021-06-1221页
- 数学理卷·2018届四川省成都市树德2021-06-118页
- 四川省成都七中2020届高三二诊模拟2021-06-1125页
- 【数学】四川省成都市树德中学20192021-06-118页
- 四川省成都市树德中学2020届高三112021-06-1126页
- 【数学】四川省成都市树德中学20192021-06-108页
- 数学文卷·2019届四川省成都市树德2021-06-096页