- 128.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
备课资料
一、三角函数的综合问题
三角函数是中学学习的重要的基本初等函数之一,近年来,高考每年都要考查三角函数的图象和性质的基础知识.在综合题中,也常常会涉及三角函数的基础知识的应用.因此,对本单元的学习要落实在基础知识、基本技能和基本方法的前提下,还应注意与其他部分知识的综合运用.
三角函数同其他函数一样,具有奇偶性、单调性、最值等问题,我们还要研究三角函数的周期性、图象及图象的变化,有关三角函数的求值、化简、证明等问题.
应熟知三角函数的基本性质,并能以此为依据,研究解析式为三角式的函数的性质,掌握判断周期性,确定单调区间的方法,能准确认识三角函数的图象,会做简图、对图象进行变化.
二、备用习题
1.的值是( )
A.tan10°+tan20° B. C.tan5° D.2-
2.若α-β=,则sinαsinβ的最大值是( )
A. B. C. D.1
3.已知sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,则cos(β-γ)的值是( )
A.1 B.-1 C. D.
4.若cosαsinx=,则函数y=sinαcosx的值域是( )
A.[,] B.[,] C.[,] D.[-1,1]
5.log2(1+tan19°)+log2(1+tan26°)=______________.
6.已知函数f(x)=cos2xcos(-2x),求f(x)的单调递减区间、最小正周期及最大值.
7.已知sinA=,cosB=,A∈(,2π),B∈(π,),求sin(2A-)的值,并判定2A-所在的象限.
8.已知f(0)=a,f()=b,解函数方程:f(x+y)+f(x-y)=2f(x)·cosy.
参考答案:
1.D 2.B 3.D 4.B 5.1
6.f(x)=[cos+cos(4x-)]=cos(4x-)+,由2kπ≤4x-≤2kπ+π(k∈Z),得原函数的单调递减区间是[+,+](k∈Z),T=,最大值是.
7.cosA=,sin2A=,cos2A=1-2sin2A=,∵B∈(π,),∴∈(,).
∴sin=,cos=.
∴sin(2A-)=sin2 Acos-cos2Asin=.
又cos(2A-)=cos2Acos+sin2Asin<0,∴2A-是第二象限角.
8.分别取 代入方程,得
①+②-③,得2f(t)=2f(0)cost+2f()sint.
∵f(0)=a,f()=b,∴f(x)=acosx+bsinx.
(设计者:房增凤)
相关文档
- 2021届高考数学一轮复习第三章三角2021-06-1642页
- 【数学】2018届一轮复习苏教版4-52021-06-1612页
- 2021届高考数学一轮总复习课时作业2021-06-166页
- 高中数学必修4教案:2_2_3向量数乘运2021-06-164页
- 【数学】2020届一轮复习(文)人教通用2021-06-1615页
- 高中数学必修4教案:8_示范教案(1_4_32021-06-167页
- 高中数学高考总复习简单的三角恒等2021-06-1630页
- 高考文科数学(北师大版)专题复习课件2021-06-1645页
- 2021届课标版高考文科数学一轮复习2021-06-167页
- 2020届二轮复习简单的三角恒等变换2021-06-1611页