- 1.98 MB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.ks5u.com
2020年湛江市高三模拟试题
理科数学
一、选择题
1.已知集合,,则( )
A. B.
C. D.
【答案】B
【解析】
【分析】
分别求出集合和,即可根据交集的运算求出.
【详解】∵,而,
∴.
故选:B.
【点睛】本题主要考查集合的交集运算,以及一元二次不等式的解法,属于容易题.
2.设(是虚数单位),则( )
A. B. 1 C. 2 D.
【答案】A
【解析】
【分析】
先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出.
【详解】∵,∴.
故选:A.
【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,
属于容易题.
3.已知等差数列的前项和为,,,则( )
A. 25 B. 32 C. 35 D. 40
- 20 -
【答案】C
【解析】
【分析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.
【详解】设等差数列的首项为,公差为,则
,解得,∴,即有.
故选:C.
【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.
4.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:
嘉宾
评分
嘉宾评分平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是( )
- 20 -
A. B. C. D.
【答案】C
【解析】
【分析】
计算出、,进而可得出结论
【详解】由表格中的数据可知,,
由频率分布直方图可知,,则,
由于场外有数万名观众,所以,.
故选:B.
【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.
5.已知函数的图象如图所示,则可以为( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.
- 20 -
【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;
其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.
故选:A.
【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.
6.若两个非零向量、满足,且,则与夹角的余弦值为( )
A. B. C. D.
【答案】A
【解析】
【分析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.
【详解】设平面向量与的夹角为,,可得,
在等式两边平方得,化简得.
故选:A.
【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.
7.已知为等比数列,,,则( )
A. 9 B. -9 C. D.
- 20 -
【答案】C
【解析】
【分析】
根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.
【详解】∵,∴,又,可解得或
设等比数列的公比为,则
当时,, ∴;
当时, ,∴.
故选:C.
【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.
8.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )
A. B. C. D.
【答案】B
【解析】
【分析】
设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.
【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为
- 20 -
,即点,
由题意可知,直线与直线垂直,,,
因此,双曲线的离心率为.
故选:B.
【点睛】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.
9.已知,,,则( )
A. B.
C. D.
【答案】D
【解析】
【分析】
先根据选项中出现的式子,由对数函数的单调性求出其大致范围, 再利用对数的运算性质和换底公式化简,即可得出三个式子的大小关系.
【详解】∵,即,
,即,
,即,
∴,即有.
∵,即,
∴.
综上, .
故选:D.
【点睛】本题主要考查对数的运算性质, 换底公式以及对数函数的单调性的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.
- 20 -
10.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )
A. B. C. D.
【答案】B
【解析】
【分析】
设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.
【详解】设点、,并设直线的方程为,
将直线的方程与抛物线方程联立,消去得,
由韦达定理得,,
,,,,,
,可得,,
抛物线的准线与轴交于,
的面积为,解得,则抛物线的方程为,
所以,.
故选:B.
【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.
- 20 -
11.已知函数(,,),将函数的图象向左平移个单位长度,得到函数的部分图象如图所示,则是的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
【答案】B
【解析】
【分析】
先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出
和的等价条件,即可根据充分条件,必要条件的定义求出.
【详解】设,根据图象可知,
,
再由, 取,
∴.
将函数的图象向右平移个单位长度,得到函数的图象,
∴.
,,
- 20 -
令,则,显然,
∴是的必要不充分条件.
故选:B.
【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.
三、解答题
12.如图,在中,,,点在线段上.
(1)若,求的长;
(2)若,,求的面积.
【答案】(1)(2)
【解析】
【分析】
(1)先根据平方关系求出,再根据正弦定理即可求出;
(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积.
【详解】(1)由,得,所以.
由正弦定理得,,即,得.
(2)由正弦定理,在中,,①
- 20 -
在中,,②
又,,,
由得,
由余弦定理得,
即,解得,
所以的面积.
【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题.
13.如图,在四棱柱中,底面为菱形,.
(1)证明:平面平面;
(2)若,是等边三角形,求二面角的余弦值.
【答案】(1)证明见解析(2)
【解析】
【分析】
(1)根据面面垂直的判定定理可知,只需证明平面即可.
由为菱形可得,连接和与的交点,
由等腰三角形性质可得,即能证得平面;
(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面
- 20 -
的法向量,平面的法向量,即可根据向量法求出二面角的余弦值.
【详解】(1)如图,设与相交于点,连接,
又为菱形,故,为的中点.
又,故.
又平面,平面,且,
故平面,又平面,
所以平面平面.
(2)由是等边三角形,可得,故平面,
所以,,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.
不妨设,则,,
则,,,,,,
设为平面法向量,
则即可取,
设为平面的法向量,
- 20 -
则即可取,
所以.
所以二面角的余弦值为0.
【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理的应用,以及利用向量法求二面角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于基础题.
14.某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:
(1)估计该批次产品长度误差绝对值的数学期望;
(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.
【答案】(1)(2)
【解析】
【分析】
(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;
(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解
- 20 -
,即可得出最小值.
【详解】(1)由柱状图,该批次产品长度误差绝对值的频率分布列为下表:
0
0.01
0.02
0.03
0.04
频率
0.4
0.3
0.2
0.075
0.025
所以的数学期望的估计为
.
(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.
设生产一件产品为标准长度的概率为,
由题意,又,解得,
所以符合要求时,生产一件产品为标准长度的概率的最小值为.
【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题.
15.已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.
【答案】(1);(2)见解析.
【解析】
【分析】
(1)根据题意得出关于、、的方程组,解出、的值,进而可得出椭圆
- 20 -
的标准方程;
(2)设点、、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.
【详解】(1)由题意得,解得,.
所以椭圆的方程是;
(2)设直线的方程为,、、,
由,得.
,则有,,
由,得,由,可得,
,
,
综上,点在定直线上.
【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题.
- 20 -
16.设函数,是函数的导数.
(1)若,证明在区间上没有零点;
(2)在上恒成立,求的取值范围.
【答案】(1)证明见解析(2)
【解析】
【分析】
(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,
函数在上单调递增,在上单调递减,而,,可知在区间上恒成立,即在区间上没有零点;
(2)由题意可将转化为,构造函数,
利用导数讨论研究其在上的单调性,由,即可求出的取值范围.
【详解】(1)若,则,,
设,则,,
,故函数是奇函数.
当时,,,这时,
又函数是奇函数,所以当时,.
综上,当时,函数单调递增;当时,函数单调递减.
又,,
故在区间上恒成立,所以在区间上没有零点.
(2),由,所以恒成立,
- 20 -
若,则,设,
.
故当时,,又,所以当时,,满足题意;
当时,有,与条件矛盾,舍去;
当时,令,则,
又,故在区间上有无穷多个零点,
设最小的零点为,
则当时,,因此在上单调递增.
,所以
于是,当时,,得,与条件矛盾.
故的取值范围是.
【点睛】本题主要考查导数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题.
17.在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.
【答案】(1),;(2).
【解析】
- 20 -
【分析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;
(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.
【详解】(1)由(为参数),得,化简得,
故直线的普通方程为.
由,得,又,,.
所以的直角坐标方程为;
(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,
纵坐标不变,横坐标变为原来的倍得到曲线的方程为,
所以曲线的参数方程为(为参数).
故点到直线的距离为,
当时,最小为.
【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.
18.已知,,函数的最小值为.
(1)求证:;
(2)若恒成立,求实数的最大值.
【答案】(1)见解析;(2)最大值为.
- 20 -
【解析】
【分析】
(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;
(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,进而可得出实数的最大值.
【详解】(1).
当时,函数单调递减,则;
当时,函数单调递增,则;
当时,函数单调递增,则.
综上所述,,所以;
(2)因为恒成立,且,,所以恒成立,即.
因为,当且仅当时等号成立,
所以,实数的最大值为.
【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.
- 20 -
- 20 -
- 20 -
相关文档
- 山西省太原市2020届高三下学期模拟2021-06-1624页
- 广东省湛江市2021届高三上学期11月2021-06-164页
- 广东省湛江市第二十一中学2019-2022021-06-169页
- 【数学】天津市南开区2020届高三下2021-06-1615页
- 西藏自治区昌都市第一高级中学20202021-06-1616页
- 河南省开封市铁路中学2020高三下学2021-06-1615页
- 江苏省连云港市老六所四星高中20202021-06-1618页
- 广东省湛江市第二十一中学2019-2022021-06-164页
- 福建省龙海市第二中学2020届高三下2021-06-1610页
- 安徽省六安市第一中学2020届高三下2021-06-1625页