- 244.27 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时规范练41 直线、平面垂直的判定与性质
基础巩固组
1.(2018天津河西区质检三,5)设m是直线,α,β是两个不同的平面,则下列说法正确的是( )
A.若m∥α,m∥β,则α∥β
B.若m∥α,m⊥β,则α⊥β
C.若α⊥β,m∥α,则m⊥β
D.若α⊥β,m⊥α,则m∥β
2.(2018重庆八中八模,7)在正方体ABCD-A1B1C1D1中,点M是线段BC1上任意一点,则下列结论正确的是( )
A.AD1⊥DM B.AC1⊥DM
C.AM⊥B1C D.A1M⊥B1C
3.(2018福建罗源一中模拟,12)设E,F分别是正方体ABCD-A1B1C1D1的棱DC上两点,且AB=2,EF=1,给出下列四个命题:①三棱锥D1-B1EF的体积为定值;②异面直线D1B1与EF所成的角为45°;③D1B1⊥平面B1EF;④直线D1B1与AC1不垂直.其中正确的命题为( )
A.①② B.②③ C.①②④ D.①④
4.(2018全国1,文10)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )
A.8 B.62 C.82 D.83
5.(2018吉林四平一模,14)ABCD是正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB,平面PBC,平面PCD,平面PAD,平面ABCD这五个平面中,互相垂直的平面有 对.
6.
如图,在正方体ABCD-A1B1C1D1中,E为棱C1D1的中点,F为棱BC的中点.
(1)求证:AE⊥DA1;
(2)在线段AA1上求一点G,使得AE⊥平面DFG.
7.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=2,点E在AD上,且AE=2ED.
(1)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(2)若△PBC的面积是梯形ABCD面积的43,求点E到平面PBC的距离.
综合提升组
8.(2018云南昆明检测,10)在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则( )
A.MN∥C1D1 B.MN⊥BC1
C.MN⊥平面ACD1 D.MN⊥平面ACC1
9.(2018吉林梅河口二模,16)在四面体ABCD中,DA⊥平面ABC,AB⊥AC,AB=4,AC=3,AD=1,E为棱BC上一点,且平面ADE⊥平面BCD,则DE= .
10.已知正四棱锥P-ABCD内接于半径为54的球O中(且球心O在该棱锥内部),底面ABCD的边长为2,求点A到平面PBC的距离.
11.
如图,在Rt△ABC中,∠ACB=90°,BC=2AC=4,D,E分别是AB,BC边的中点,沿DE将△BDE折起至△FDE,且∠CEF=60°.
(1)求四棱锥F-ADEC的体积;
(2)求证:平面ADF⊥平面ACF.
12.
如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是侧棱PA上的动点.
(1)求四棱锥P-ABCD的体积.
(2)如果E是PA的中点,求证:PC∥平面BDE.
(3)是否不论点E在侧棱PA的任何位置,都有BD⊥CE?证明你的结论.
创新应用组
13.
如图所示,平面ABCD⊥平面BCE,四边形ABCD为矩形,BC=CE,点F为CE的中点.
(1)证明:AE∥平面BDF;
(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PM⊥BE?若存在,确定点P的位置,并加以证明;若不存在,请说明理由.
参考答案
课时规范练41 直线、平面垂直的判定与性质
1.B 在A中,m∥α,m∥β,则α与β相交或平行,故A错误;在B中,m∥α,m⊥β,则由面面垂直的判定定理得α⊥β,故B正确;在C中,α⊥β,m∥α,则m与β相交,平行或m⫋β,故C错误;在D中,α⊥β,m⊥α,则m∥β或m⫋β,故D错误,故选B.
2.C 由题得B1C⊥BC1,B1C⊥AB,
因为AB,BC1⫋平面ABM,且AB∩BC1=B,
所以B1C⊥平面ABM,所以AM⊥B1C.故选C.
3.A 由题意得,如图所示,
①中,三棱锥的体积为VD1-B1EF=VB1-D1EF=13×S△D1EF·B1C1=13×12×EF×2×2=23,所以体积为定值;②中,在正方体中,EF∥C1D1,所以异面直线D1B1与EF所成的角就是直线D1B1与C1D1所成的角,即∠B1D1C1=45°,所以这是正确的;③中,由②可知,直线D1B1与EF不垂直,所以D1B1⊥面B1EF不成立,所以是错误的;④B1D1⊥平面AA1C1C,又AC1⫋平面AA1C1C,可知D1B1与AC1垂直,所以不正确.故选A.
4.C 在长方体ABCD-A1B1C1D1中,AB⊥平面BCC1B1,连接BC1,则∠AC1B为AC1与平面BB1C1C所成的角,∠AC1B=30°,所以在Rt△ABC1中,BC1=ABtan∠AC1B=23,又BC=2,
所以在Rt△BCC1中,CC1=(23)2-22=22,
所以该长方体体积V=BC×CC1×AB=82.
5.5 因为PA⊥平面ABCD,所以平面PAD⊥平面ABCD,平面PAB⊥平面ABCD.又因为AD⊥平面PAB,所以平面PAD⊥平面PAB,同理可得平面PBC⊥平面PAB,平面PAD⊥平面PCD,故互相垂直的平面有5对.故填5.
6.(1)证明 连接AD1,BC1(图略).
由正方体的性质可知,DA1⊥AD1,DA1⊥AB,又AB∩AD1=A,
∴DA1⊥平面ABC1D1.
∵AE⫋平面ABC1D1,∴AE⊥DA1.
(2)解 所求点G即为点A1,证明如下:
由(1)可知AE⊥DA1,取CD的中点H,连接AH,EH(图略),由DF⊥AH,DF⊥EH,AH∩EH=H,
可得DF⊥平面AHE.
∵AE⫋平面AHE,∴DF⊥AE.
又DF∩A1D=D,
∴AE⊥平面DFA1,
即AE⊥平面DFG.
7.(1)证明 ∵AB⊥AC,AB=AC,
∴∠ACB=45°.
∵底面ABCD是直角梯形,∠ADC=90°,AD∥BC,
∴∠ACD=45°,∴AD=CD,
∴BC=2AC=2AD.
∵AE=2ED,CF=2FB,
∴AE=BF=23AD,
∴四边形ABFE是平行四边形,
∴AB∥EF.
又AB⊥AC,∴AC⊥EF.
∵PA⊥底面ABCD,∴PA⊥EF.
∵PA∩AC=A,∴EF⊥平面PAC.
∵EF⫋平面PEF,
∴平面PEF⊥平面PAC.
(2)解 ∵PA⊥底面ABCD,且AB=AC,
∴PB=PC,
取BC的中点G,连接AG,则AG⊥BC,AG=CD=1.
设PA=x,连接PG,则PG=x2+1,
∵△PBC的面积是梯形ABCD面积的43倍,
∴12×2×PG=43×12×(1+2)×1,即PG=2,求得x=3,
∵AD∥BC,AD⊈平面PBC,BC⫋平面PBC,∴AD∥平面PBC,∴点E到平面PBC的距离即是点A到平面PBC的距离,
∵VA-PBC=VP-ABC,S△PBC=2S△ABC,
∴点E到平面PBC的距离为12PA=32.
8.D 对于选项A,因为M,N分别是BC1,CD1的中点,所以点N∈平面CDD1C1,点M∉平面CDD1C1,所以直线MN是平面CDD1C1的交线,
又因为直线C1D1在平面CDD1C1内,故直线MN与直线C1D1不可能平行,故选项A错;对于选项B,正方体中易知NB≠NC1,因为点M是BC1的中点,所以直线MN与直线BC1不垂直.故选项B不对;对于选项C,假设MN⊥平面ACD1,可得MN⊥CD1.因为N是CD1的中点,所以MC=MD1.这与MC≠MD1矛盾.故假设不成立.所以选项C不对;对于选项D,分别取B1C1,C1D1的中点P、Q,连接PM、QN、PQ.因为点M是BC1的中点,所以PM∥CC1且PM=12CC1.同理QN∥CC1且QN=12CC1.所以PM
∥QN且PM=QN,所以四边形PQNM为平行四边形.所以PQ∥MN.在正方体中,CC1⊥PQ,PQ⊥AC.因为AC∩CC1=C,AC⊂平面ACC1,CC1⊂平面ACC1,所以PQ⊥平面ACC1.因为PQ∥MN,所以MN⊥平面ACC1.故选D.
9.135 过A作AH⊥DE,因为平面ADE⊥平面BCD,且平面ADE⊥平面BCD=DE,
∴AH⊥平面BCD,∴AH⊥BC,又AD⊥BC,
∴BC⊥平面ADE,BC⊥AE,
∵AE=3×45,AD=1,∴DE=135.
10.解 如图所示,连接AC与BD交于O',显然球心O在正棱锥P-ABCD的高PO'上,
因为球O的半径为54,所以OD=OP=54,
又因为底面ABCD的边长为2,
所以BD=2+2=2,O'D=12BD=1,
在△OO'D中,由勾股定理得OO'=OD2-O'D2=(54) 2-12=34,
所以O'P=OP+OO'=54+34=2,
设点A到平面PBC的距离为h,则由VA-PBC=VP-ABC,可得:
13×12×2×(5)2-(22) 2×h=13×12×(2)2×2,解得h=43.
11.(1)解 ∵D,E分别是AB,BC边的中点,
∴DE
相关文档
- 2020-2021学年北师大版数学必修2作2021-06-1632页
- 【数学】2019届一轮复习北师大版导2021-06-1619页
- 【数学】2020届一轮复习北师大版概2021-06-167页
- 【数学】2019届高考一轮复习北师大2021-06-1615页
- 数学北师大版(2019)必修第二册:1-4-3 2021-06-166页
- 【数学】2019届一轮复习北师大版(文2021-06-1614页
- 北师大版高中数学选修1-1同步练习2021-06-163页
- 【数学】2020届一轮复习北师大版解2021-06-165页
- 【数学】2020届一轮复习北师大版排2021-06-166页
- 北师大版数学选修1-2练习(第4章)复数2021-06-163页