- 595.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第 17 课时 平面向量的实际背景及其基本概念
课时目标
1.通过物理、几何模型的探究,了解向量的实际背景.掌握向量的有关概念及向量的几
何表示.
2.掌握相等向量与共线向量的概念.
识记强化
1.既有大小,又有方向的量叫向量.
2.向量可以用有向线段AB→表示,也可用字母表示,印刷中用黑体小写字母 a,b,c,…
表示,书写时,可以用带箭头的小写字母a
→
,b
→
,c
→
,…表示.
3.表示向量的有向线段的长度,叫向量的模,模为零的向量叫零向量;模为 1 的向量
叫单位向量.
4.模相等、方向相同的向量叫相等向量;方向相同或相反的两个向量叫平行向量,也
叫共线向量.规定零向量与任何向量共线.
课时作业
一、选择题
1.给出下列物理量:①质量;②速度;③位移;④力;⑤路程;⑥功;⑦加速度.其
中是向量的有( )
A.4 个 B.5 个
C.6 个 D.7 个
答案:A
解析:速度、位移、力、加速度,这 4 个物理量是向量,它们都有方向和大小.
2.已知 D 为平行四边形 ABPC 两条对角线的交点,则|PD→ |
|AD→ |
的值为( )
A.1
2 B.1
3
C.1 D.2
答案:C
解析:因为四边形 ABPC 是平行四边形,D 为对角线 BC 与 AP 的交点,所以 D 为 PA
的中点,所以|PD→ |
|AD→ |
的值为 1.
3.下列说法正确的是( )
A.若 a 与 b 平行,b 与 c 平行,则 a 与 c 一定平行
B.终点相同的两个向量不共线
C.若|a|>|b|,则 a>b
D.单位向量的长度为 1
答案:D
解析:A 中,因为零向量与任意向量平行,若 b=0,则 a 与 c 不一定平行.B 中,两
向量终点相同,若夹角是 0°或 180°,则共线.C 中,向量是既有大小,又有方向的量,不
可以比较大小.
4.如图,在⊙O 中,向量OB→ 、OC→ 、AO→ 是( )
A.有相同起点的向量
B.共线向量
C.模相等的向量
D.相等的向量
答案:C
5.下列命题正确的是( )
A.若|a|=|b|,则 a=b
B.若 a≠b,则|a|≠|b|
C.若|a|=|b|,则 a 与 b 可能共线
D.若|a|≠|b|,则 a 一定不与 b 共线
答案:C
解析:因为向量既有大小又有方向,只有方向相同、大小(长度)相等的两个向量才相等,
因此 A 错误.两个向量不相等,但它们的模可以相等,故 B 错误.不论两个向量的模是否
相等,这两个向量都可能共线,C 正确,D 错误.
6.给出下列四个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若 a=b,b=c,则 a=c;
③设 a0 是单位向量,若 a∥a0,且|a|=1,则 a=a0;
④a=b 的充要条件是|a|=|b|且 a∥b.
其中假命题的个数为( )
A.1 B.2
C.3 D.4
答案:C
解析:①不正确.两个向量起点相同,终点相同,则两向量相等;但两个向量相等,不
一定有相同的起点和终点.
②正确.根据向量相等的定义判定.
③不正确.a 与 a0 均是单位向量,a=a0 或 a=-a0.
④不正确.a=b 的充要条件是|a|=|b|且 a,b 同向.
二、填空题
7.在四边形 ABCD 中,AB→∥CD→ ,|AB→|≠|CD→ |,则四边形 ABCD 是________.
答案:梯形
8.给出下列四个条件:(1)a=b;(2)|a|=|b|;(3)a 与 b 方向相反;(4)|a|=0 或|b|=0.其中
能使 a∥b 成立的条件是________.
答案:(1)(3)(4)
解析:若 a=b,则 a 与 b 大小相等且方向相同,所以 a∥b;若|a|=|b|,则 a 与 b 的大
小相等,而方向不确定,因此不一定有 a∥b;方向相同或相反的向量都是平行向量,因此
若 a 与 b 方向相反,则有 a∥b;零向量与任意向量平行,所以若|a|=0 或|b|=0,则 a∥b.
9.
如图,设 O 是正六边形 ABCDEF 的中心,则
(1)与AO→ 相等的向量有________;
(2)与AO→ 共线的向量有________;
(3)与AO→ 模相等的向量有________个.
答案:(1)BC→,OD→ ,FE→;(2)BC→,OD→ ,FE→,CB→,DO→ ,EF→,OA→ ,AD→ ,DA→ ;(3)23
解析:根据向量的相关概念,可得(1)与AO→ 相等的向量有BC→,OD→ ,FE→;(2)与AO→ 共线的向
量有BC→,OD→ ,FE→,CB→,DO→ ,EF→,OA→ ,AD→ ,DA→ ;(3)正六边形的每一条边和每一条中心与顶点连成
的线段,长度与AO→ 的模都相等,这样的线段共有 12 条,再注意到方向,共 24 个向量,除
去AO→ 本身,满足条件的向量有 23 个.
三、解答题
10.已知在四边形 ABCD 中,AB→∥CD→ ,求AD→ 与BC→分别满足什么条件时,四边形 ABCD
满足下列情况.
(1)四边形 ABCD 是等腰梯形;
(2)四边形 ABCD 是平行四边形.
解:(1)|AD→ |=|BC→|,且AD→ 与BC→不平行.
∵AB→∥CD→ ,∴四边形 ABCD 为梯形或平行四边形.若四边形 ABCD 为等腰梯形,则|AD→ |
=|BC→|,同时两向量不共线.
(2)AD→ =BC→(或AD→ ∥BC→).
若AD→ =BC→,即四边形的一组对边平行且相等,此时四边形 ABCD 为平行四边形.
11.一架飞机向北飞行了 300 km,然后又向西飞行了 300 km.
(1)飞机飞行的路程是多少?
(2)两次飞行结束后,飞机在出发地的什么方位?距离出发地多远?(保留根号)
解:(1)300+300=600(km),飞机飞行的路程是 600 km.
(2)两次飞行结束后,飞机在出发地的西北方向(或北偏西 45°),距离出发地 300 2 km.
能力提升
12.如图所示的 4×5 的矩形(每个小方格都是正方形),与AB→相等,并且要求向量的起
点和终点都在方格的顶点处的向量可以作出________个.
答案:3
13.如图,已知正比例函数 y=x 的图象 m 与直线 n 平行,A 0,- 2
2 、B(x,y)是直线
n 上的两点,问:
(1)x、y 为何值时,AB→=0?
(2)x、y 为何值时,AB→为单位向量?
解:(1)已知点 B(x,y)是直线 n 上的动点,要使得AB→=0,必须且只需点 B(x,y)与 A 重
合,于是 x=0,y=- 2
2
,即当 x=0,y=- 2
2
时,AB→=0.
(2)
如图,要使得AB→是单位向量,必须且只需|AB→|=1.由已知 m∥n 且 A 0,- 2
2 ,
∴点 B1 的坐标是
2
2
,0 .
在 Rt△AOB1 中,有|AB1
→ |2=|OA→ |2+|OB1
→ |2=1.
上式表明,向量AB1
→ 是单位向量,同理可得,
当点 B2 的坐标是 - 2
2
,- 2 时,向量AB2
→ 也是单位向量.
综上,有当 x= 2
2
,y=0 或 x=- 2
2
,y=- 2时,AB→为单位向量.
相关文档
- 上海市青浦区2021届高三上学期期终2021-06-168页
- 山东省潍坊诸城一中2021届高三数学2021-06-1615页
- 高一数学 (人教版必修3):第二章 抽样 2021-06-1610页
- 人教a版数学【选修1-1】作业:2-2-22021-06-166页
- 高一数学必修1课件-3方程的根与函2021-06-1613页
- 数学北师大版(2019)必修第二册:模块素2021-06-1615页
- 高考数学考点25三视图与直观图试题2021-06-1622页
- 2020-2021学年北师大版数学必修2作2021-06-1638页
- 高考数学二轮复习第一部分专题五解2021-06-1684页
- 人教a版高中数学选修1-1课时自测当2021-06-162页