• 325.00 KB
  • 2021-06-17 发布

高中数学必修2教案:4_1_1圆的标准方程

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎4.1.1 圆的标准方程 ‎(一)教学目标 ‎1.知识与技能 ‎(1)掌握圆的标准方程,能根据圆心、半径写出圆的标准方程.‎ ‎(2)会用待定系数法求圆的标准方程.‎ ‎2.过程与方法 进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题发现问题和解决问题的能力.‎ ‎3.情感态度与价值观 通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣.‎ ‎(二)教学重点、难点 重点:圆的标准方程 难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.‎ ‎(三)教学过程 教学环节 教学内容 师生互动 设计意图 复习引入 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么圆是否也可用一个方程来表示呢?如果能,这个方程具有什么特征?‎ 由学生回答,然后引入课题 设置情境引入课题 概念形成 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r (其中a、b、r都是常数,r>0)设M (x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P = {M|MA| = r},由两点间的距离公式让学生写出点的坐标适合的条件 ‎ ①‎ 化简可得:(x – a)2 + (y – b)2 = r2②‎ 引导学生自己证明(x – a)2 + (y – b)2 = r2为圆的方程,得出结论.‎ 方程②就是圆心为A (a,b)半径为r的圆的方程,我们把它叫做圆的标准方程.‎ 通过学生自己证明培养学生的探究能力.‎ ‎6 –‎ ‎–‎ ‎4 –‎ ‎–‎ ‎2 –‎ ‎–‎ ‎–‎ ‎–2 –‎ ‎–‎ ‎–4 –‎ ‎–‎ ‎–‎ ‎–5‎ ‎5‎ A M 应用举例 例1 写出圆心为A (2,–3)半径长等于5的圆的方程,并判断点M1(5,–7),是否在这个圆上.‎ 分析探求:可以从计算点到圆心的距离入手.‎ 探究:点M(x0,y0)与圆(x – a)2 + (y – b)2 = r2的关系的判断方法:‎ ‎(1)(x0 – a)2 + (y0 – b)2>r2,点在圆外.‎ ‎(2)(x0 – a)2 + (y0 – b)2 = r2,点在圆上. ‎ ‎(3)(x0 – a)2 + (y0 – b)2 <r2,点在圆内.‎ 引导学生分析探究 从计算点到圆心的距离入手.‎ ‎ 例1 解:圆心是A(2,–3),半径长等于5的圆的标准方程是(x + 3)22 + ( y + 3)2 =25.‎ 把M1 (5,–7),M2 (,–1) 的坐标代入方程(x –2)2 + (y +3)2 =25,左右两边相等,点M1的坐标适合圆的方程,所以点M2在这个圆上;把M2 (,–1)的坐标代入方程(x – 2)2 + (y +3)22 =25,左右两边 不相等,点M2的坐标不适合圆的方程,所以M2不在这个圆上 通过实例引导学生掌握求圆的标准方程的两种方法.‎ 例2 △ABC的三个顶点的坐标是A(5,1),B(7,–3),C(2,– 8). 求它的外接圆的方程.‎ 例2 解:设所求圆的方程是(x– a)2 + (y – b)2 = r2. ①‎ 因为A (5,1),B (7,–3),C 师生共同分析:从圆的标准方程(x – a)2 + (y – b)2 = r2可知,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数,(学生自己运算解决)‎ ‎ (2,– 8) 都在圆上,所以它们的坐标都满足方程①. 于是 解此方程组,得 所以,△ABC的外接圆的方程是(x– 2)2 + (y +3)2 =25.22222‎ 例3 已知圆心为C的圆C. 经过点A(1,1)和B(2,–2),且圆心在 l : x – y + 1 = 0上,求圆心为C的圆的标准方程.‎ 比较例(2)、例(3)可得出△ABC外接圆的标准方程的两种求法:‎ ‎①根据题设条件,列出关于a、b、r的方程组,解方程组得到a、b、r得值,写出圆的根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.‎ 练习:课本P127 第1、3、4题 师生共同分析:如图确定一个图只需确定圆心位置与半径大小.圆心为C的圆经过点A(1,1)和B(2,–2),由于圆心C与A、B两点的距离相等,所以圆心C在线段AB的垂直平分线m上,又圆心C在直线l上,因此圆心C是直线l与直线m的交点,半径长等于|CA|或|CB|.(教师板书解题过程)‎ B m A C 例3 解:因为A (1,1),B (2,– 2),所以线段AB的中点D的坐标为(,),直线AB的斜率 kAB == –3,‎ 因为线段AB 的垂直平分线l′的方程是 y +,‎ 即x –3y –3 = 0.‎ 圆心C的坐标是方程组 的解.‎ 解此方程组,得 所以圆心C的坐标是(–3,–2) .‎ 圆心为C的圆的半径长 r =|AC|== 5.‎ 所以,圆心为C的圆的标准方程是 ‎(x + 3)22 + (y +2)2 =25.‎ 归纳总结 ‎1.圆的标准方程.‎ ‎2.点与圆的位置关系的判断方法.‎ ‎3.根据已知条件求圆的标准方程的方法.‎ 教师启发,学生自己比较、归纳.‎ 形成知识体系 课外作业 布置作业:见习案4.1第一课时 学生独立完成 巩固深化 备选例题 例1 写出下列方程表示的圆的圆心和半径 ‎(1)x2 + (y + 3)2 = 2; (2)(x + 2)2 + (y – 1)2 = a2 (a≠0)‎ ‎【解析】(1)圆心为(0,–3),半径为;‎ ‎(2)圆心为(–2,1),半径为|a|.‎ 例2 圆心在直线x – 2y – 3 = 0上,且过A(2,–3),B(–2,–5),求圆的方程.‎ 解法1:设所求的圆的方程为(x – a)2 + (y – b)2 = r2‎ 由条件知 解方程组得 即所求的圆的方程为(x + 1)2 + (y + 2)2 = 10‎ 解法2:,AB的中点是(0,–4),‎ 所以AB的中垂线方程为2x + y + 4 = 0‎ 由得 因为圆心为(–1, –2 )又.‎ 所以所求的圆的方程是(x + 1)2 + (y + 2)2 = 10.‎ 例3 已知三点A(3,2),B(5,–3),C(–1,3),以P(2,–1)为圆心作一个圆,使A、B、C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.‎ ‎【解析】要使A、B、C三点中一点在圆外,一点在圆上,一点在圆内,则圆的半径是|PA|、|PB|、|PC|中的中间值.‎ ‎.‎ 因为|PA|<|PB|<|PC|‎ 所以圆的半径.‎ 故所求的圆的方程为(x – 2)2 + (y + 1)2 = 13.‎