- 117.00 KB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
任意角的三角函数单元练习题(一)
一、选择题
1.下列叙述正确的是
A.180°的角是第二象限的角 B.第二象限的角必大于第一象限的角
C.终边相同的角必相等 D.终边相同的角的同一个三角函数的值相等
2.以下四个命题,其中,正确的命题是
①小于90°的角是锐角 ②第一象限的角一定不是负角 ③锐角是第一象限的角 ④第二象限的角必大于第一象限的角
A.①② B.③ C.②③ D.③④
3.sin1320°的值是
A. B.- C. D.-
4.的值是
A.2 B. C.- D.
5.若扇形圆心角为60°,半径为a,则内切圆与扇形面积之比为
A.1∶2 B.1∶3 C.2∶3 D.3∶4
6.若θ∈(,),则等于
A.cosθ-sinθ B.sinθ+cosθ
C.sinθ-cosθ D.-cosθ-sinθ
7.若sin=,cos=-,则θ角的终边在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.已知sin(3π+α)=lg,则tan(π+α)的值是
A.- B. C.± D.
9.将角α的终边顺时针旋转,则它与单位圆的交点坐标是
A.(cosα,sinα) B.(cosα,-sinα)
C.(sinα,-cosα) D.(sinα,cosα)
10.若tanθ=,则cos2θ+sinθcosθ的值是
A.- B.- C. D.
二、填空题
11.tan(-π)的值是 .
12.若角α的终边在直线y=-x上,则= .
13.使tanx-有意义的x的集合为 .
14.已知α是第二象限的角,且cos=-,则是第 象限的角.
15.已知θ角终边上一点M(x,-2),且cosθ=,则sinθ=____________;tanθ=____________.
16.已知sinθ-cosθ=,则sin3θ-cos 3θ的值为____________.
三、解答题
17.设cosθ=(m>n>0),求θ的其他三角函数值.
18.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°
19.证明(1) = (2)tan2θ-sin2θ=tan2θsin2θ
20.已知α是第三象限的角,且
f(α)=
(1)化简f(α); (2)若cos(α-π)=,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
21.已知cos(-α)=,求cos(π+α)+sin2(α-)的值.
任意角的三角函数单元练习题(一)答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
D
D
C
A
D
C
C
D
二、填空题
11.- 12.0 13.{x|x∈R且x≠,k∈Z} 14.三 15.- ± 16.
三、解答题
17.设cosθ=(m>n>0),求θ的其他三角函数值.
解:∵m>n>0,∴cosθ=>0
∴θ是第一象限角或第四象限角.
当θ是第一象限角时:
sinθ==
tanθ=
当θ是第四象限角时:
sinθ=-
tanθ=
18.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°
解:原式=2-(sin221°+cos 221°)+sin217°(sin217°+cos 217°)+cos 217°
=2-1+sin217°+cos 217°=1+1=2
19.证明(1) =
(2)tan2θ-sin2θ=tan2θsin2θ
(1) 证明:左=
===
(∵cos θ≠0,∴分子、分母可同除以cosθ)
==右,证毕.
还可用其他证法.
(2)证明:左=-sin2θ=
===tan2θsin2θ=右,证毕.
20.已知α是第三象限的角,且
f(α)=
(1)化简f(α);(2)若cos(α-π)=,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
解:(1)f(α)=
==-cosα
(2)由已知得sinα=-,cosα=-, ∴f(α)=
(3)f(-1860°)=-
21.已知cos(-α)=,求cos(π+α)+sin2(α-)的值.
解:cos(π+α)=cos[π-(-α)]=-cos(-α)=-.
又sin2(α-)=1-cos2(-α)=
∴原式=.