• 378.00 KB
  • 2021-06-22 发布

专题02+平面向量与复数(仿真押题)-2019年高考数学(理)命题猜想与仿真押题

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的(  )‎ A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 解析:由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,解得m=-6,则m=-6时,a=(-1,2),a+b=(2,-4),所以a∥(a+b),则“m=-6”是“a∥(a+b)”的充要条件,故选A.‎ 答案:A ‎2.在梯形ABCD中,AD∥BC,已知AD=4,BC=6,若=m+n(m,n∈R),则=(  )‎ A.-3    B.- C. D.3‎ 解析:过点A作AE∥CD,交BC于点E,则BE=2,CE=4,所以m+n===+=-+=-+,所以==-3.‎ 答案:A ‎3.已知向量a=(x,),b=(x,-),若(2a+b)⊥b,则|a|=(  )‎ A.1 B. C. D.2‎ 解析:因为(2a+b)⊥b,所以(2a+b)·b=0,即(3x,)·(x,-)=3x2-3=0,解得x=±1,所以a=(±1,),|a|==2,故选D.‎ 答案:D ‎4.已知向量a=(m,1),b=(m,-1),且|a+b|=|a-b|,则|a|=(  )‎ A.1 B. C. D.4‎ 解析:∵a=(m,1),b=(m,-1),∴a+b=(2m,0),a-b=(0,2),又|a+b|=|a-b|,∴|2m|=2,∴m=±1,∴|a|==.故选C.‎ 答案:C ‎5.已知A(-1,cosθ),B(sinθ,1),若|+|=|-|(O为坐标原点),则锐角θ=(  )‎ A. B. C. D. ‎6.在△ABC中,AB=AC=3,∠BAC=30°,CD是边AB上的高,则·=(  )‎ A.- B. C. D.- 解析:依题意得||=,·=0,·=·(+)=·+·=·=||·||·cos60°=3××=,故选B. ‎ ‎(2)由(1),可得f(x)=a·b-2λ|a+b|=cos 2x-4λcos x,‎ 即f(x)=2(cos x-λ)2-1-2λ2.‎ 因为x∈,所以0≤cos x≤1.‎ ‎①当λ<0时,当且仅当cos x=0时,f(x)取得最小值-1,这与已知矛盾;‎ ‎②当0≤λ≤1时,当且仅当cos x=λ时,f(x)取得最小值-1-2λ2,由已知得-1-2λ2=-,解得λ=;‎ ‎③当λ>1时,当且仅当cos x=1时,f(x)取得最小值1-4λ,由已知得1-4λ=-,解得λ=,这与λ>1相矛盾;综上所述λ=.‎ ‎26.设复数z=a+i(i是虚数单位,a∈R,a>0),且|z|=.‎ ‎(Ⅰ)求复数z;‎ ‎(Ⅱ)在复平面内,若复数+(m∈R)对应的点在第四象限,求实数m取值范围.‎ ‎【答案】(Ⅰ);(Ⅱ).‎ ‎27.已知平面上三个向量,其中.‎ ‎(1)若,且,求的坐标; ‎ ‎(2)求函数f(x)在上的单调区间.‎ ‎20.已知△ABC的三个内角A、B、C所对的边分别是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.‎ ‎(1)求角B的大小;学=科网 ‎(2)若b=,求a+c的取值范围.‎ ‎(2)由余弦定理,得b2=a2+c2-2accos 120°=a2+c2+ac=(a+c)2-ac≥(a+c)2-2=(a+c)2,当且仅当a=c时取等号,‎ ‎∴(a+c)2≤4,∴a+c≤2,‎ 又a+c>b=,∴a+c∈(,2].‎