- 179.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
小题强化练(二)
一、选择题
1.设集合M={x|x2-x≥0},N={x|x<2},则M∩N=( )
A.{x|x<0} B.{x|1≤x<2}
C.{x|x≤0或1≤x<2} D.{x|0≤x≤1}
2.复数的虚部是( )
A. B.
C.- D.-
3.∃x≥0,使2x+x-a≤0,则实数a的取值范围是( )
A.(1,+∞) B.[1,+∞)
C.(-∞,1) D.(-∞,1]
4.设向量a,b满足a+b=(3,1),a·b=1,则|a-b|=( )
A.2 B.
C.2 D.
5.设数列{an}为等差数列,a1=22,Sn为其前n项和,若S10=S13,则公差d=( )
A.-2 B.-1
C.1 D.2
6.在的二项展开式中,x2的系数为( )
A. B.-
C. D.-
7.已知F是抛物线C:y2=4x的焦点,抛物线C的准线与双曲线Г:-=1(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e=( )
A. B.
C. D.
8.将甲、乙等6位同学平均分成正方、反方两组举行辩论赛,则甲、乙被分在不同组中的概率为( )
A. B.
C. D.
9.若函数f(x)=sin(ωx+φ)的图象关于点对称,且f(x)在上单调递减,则ω=( )
A.1 B.2
C.3 D.4
10.已知点P在圆x2+y2=4上,A(-2,0),B(2,0),M为BP中点,则sin∠BAM的最大值为( )
A. B.
C. D.
11.(多选)某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数为甲:81,84,m,70,85,85,85;乙:93,84,79,86,84,84,87(其中m为数字90~99中的一个).则下列结论不正确的是( )
A.甲选手的平均分有可能和乙选手的平均分相等
B.甲选手的平均分有可能比乙选手的平均分高
C.甲选手得分的中位数比乙选手得分的中位数低
D.甲选手得分的众数比乙选手得分的众数高
12.(多选)如图,棱长为1的正方体ABCDA1B1C1D1中,P为线段A1B上的动点,则下列结论正确的是( )
A.平面D1A1P⊥平面A1AP
B.∠APD1的取值范围是
C.三棱锥B1D1PC的体积为定值
D.DC1⊥D1P
13(多选)若定义域为(0,+∞)的函数f(x)的导函数f′(x)满足xf′(x)+1>0,且f(1)=1,则下列结论中不成立的是( )
A.f(e)>1
B.f<0
C.∀x∈(1,e),f(x)>0
D.∃x∈(1,e),f(x)-f+2<0
二、填空题
14.已知如表所示的数据的回归直线方程为=4x+242,则实数a=________.
x
2
3
4
5
6
y
251
254
257
a
266
15.已知函数f(x)=则不等式f(x)<1的解集为______.
16.已知Sn是数列{an}的前n项和,Sn=2-2an+1,若a2=,则S5=______.
17.已知F1,F2分别为椭圆C:+y2=1(a>1)的左、右焦点,点F2关于直线y=x的对称点Q在椭圆上,则长轴长为________;若P是椭圆上的一点,且|PF1|·|PF2|=,则S△F1PF2=________.
小题强化练(二)
1.解析:选C.由x2-x≥0,解得x≥1或x≤0,所以集合M={x|x≥1或x≤0}.因为N={x|x<2},所以M∩N={x|x≤0或1≤x<2},故选C.
2.解析:选A.由====-+i,可知复数的虚部为,故选A.
3.解析:选B.因为∃x≥0,使2x+x-a≤0,所以a≥2x+x,易知f(x)=2x+x在[0,+∞)上单调递增,所以f(x)min=f(0)=1,所以a≥1,故选B.
4.解析:选B.因为a+b=(3,1),所以|a+b|==,所以|a-b|2=|a+b|2-4a·b=10-4×1=6,所以|a-b|=,故选B.
5.解析:选A.法一:设等差数列{an}的公差为d,由a1=22,S10=S13得10×22+d=13×22+d,解得d=-2,故选A.
法二:由题意可得3a12=a11+a12+a13=S13-S10=0,则a12=0,所以公差d===-2.
6.解析:选D.由二项式定理可得的通项为Tr+1=C=C(-2)rx3-r(r=0,1,2,3,…,6),令3-r=2,则r=1,所以x2的系数为C×(-2)1=-,
故选D.
7.解析:选D.由题意可得,抛物线y2=4x的焦点为F(1,0),准线为直线x=-1,双曲线的渐近线方程为y=±x.设点A在第二象限,由等边三角形的性质可知A.又因为点A在双曲线的渐近线y=-x上,所以渐近线方程为y=-x,所以=,则e===.
8.解析:选C.由题可知,所有的分组组数为C,甲、乙被分在不同组中的基本事件为CC,故所求的概率P==.
9.解析:选C.由函数f(x)的图象关于点对称,且在上单调递减,可知ω+φ=k1π,k1∈Z①,且在上单调递减,则函数f(x)的最小正周期T≥2×②,⊆,k2∈Z③,由③可得
其中k2∈Z.④
因为0<φ≤,所以φ=,由①②④及φ=,ω>0可得k1,k2∈Z,即解得ω=3.故选C.
10.解析:选B.设点M的坐标为(x,y),则P(2x-2,2y),将点P的坐标代入圆的方程可得点M的轨迹方程为(x-1)2+y2=1,如图所示,当AM与圆K相切时,sin∠BAM取得最大值,此时sin∠BAM==.
11.解析:选ABC.由题意知,甲选手的平均分为x甲=×(70+81+85+85+85+84+m)=70+,m∈[90,99],且m∈Z;
乙选手的平均分为x乙=×(79+84+84+84+86+87+93)=85,令70+=85,解得m
=107,这与m的取值范围不符,所以A,B选项错误;
对于C,甲选手得分的中位数是85,乙选手得分的中位数为84,甲的中位数比乙的中位数高,C错误;
对于D,甲选手得分的众数是85,乙选手得分的众数是84,甲的众数高于乙的众数,D正确.
12.解析:选ACD.在A中,因为A1D1⊥平面A1AP,A1D1⊂平面D1A1P,所以平面D1A1P⊥平面A1AP,故A正确;
对B中,当P与A1重合时,∠APD1=,故B错误;
在C中,因为△B1D1C的面积是定值,A1B∥平面B1D1C,所以点P到平面B1D1C的距离是定值,所以三棱锥B1D1PC的体积为定值,故C正确;
在D中,因为DC1⊥D1C,DC1⊥BC,D1C∩BC=C,D1C,BC⊂平面BCD1A1,所以DC1⊥平面BCD1A1,所以DC1⊥D1P,故D正确.
13.解析:选ABD.根据题意,若定义域为(0,+∞)的函数f(x)的导函数f′(x)满足xf′(x)+1>0,则有f′(x)+>0,则有(f(x)+ln x)′>0,设g(x)=f(x)+ln x,则g′(x)=f′(x)+>0,则g(x)在(0,+∞)上为增函数,依次分析选项:
对于A,e>1,则g(e)>g(1),即f(e)+ln e>1,则有f(e)>0,不能得到f(e)>1,A不成立;
对于B,<1,则g<g(1),即f+ln =f-1<1,即有f<2,f<0不一定成立,故B不成立;
对于C,g(x)在(1,e)上为增函数,且g(1)=1,则有f(x)+ln x>1,则f(x)>1-ln x,又当1<x<e时,0<ln x<1,则f(x)>0,符合题意;
对于D,当x∈(1,e)时,有x>>>0,此时有g(x)>g,即f(x)+ln x>f+ln,变形可得f(x)-f+2ln x>0,又当1<x<e时,0<ln x<1,则f(x)-f+2>0恒成立,不符合题意.故选ABD.
14.解析:回归直线=4x+242必过样本点的中心(x,y),而x==4,y=
=,所以=4×4+242,解得a=262.
答案:262
15.解析:当x<0时,f(x)=x2<1,解得-1
相关文档
- 2020年浙江新高考数学二轮复习教师2021-06-249页
- 浙江专用2020高考数学二轮复习专题2021-06-2449页
- 2015届高考数学二轮复习专题训练试2021-06-248页
- 新高考2020版高考数学二轮复习专题2021-06-246页
- 2020高考数学二轮复习练习:第一部分2021-06-2310页
- 2020届艺术生高考数学二轮复习课时2021-06-233页
- 浙江专用2020高考数学二轮复习热考2021-06-2313页
- 高考数学二轮复习课件:第二编 专题2021-06-2379页
- 高考数学二轮复习课件:第二编 专题2021-06-2393页
- 2020年浙江新高考数学二轮复习专题2021-06-236页