• 438.00 KB
  • 2021-06-24 发布

浙江专用2020高考数学二轮复习专题四立体几何第2讲空间点线面的位置关系专题强化训练

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第2讲 空间点、线、面的位置关系 专题强化训练 ‎1.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的(  )‎ A.充分不必要条件      B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 解析:选B.因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;又直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B.‎ ‎2.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(  )‎ 解析:选A.B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.‎ ‎3.在正方体ABCDA1B1C1D1中,E为棱CD的中点,则(  )‎ A.A1E⊥DC1         B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC 解析:选C.A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,所以A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以BC1⊥A1E.故选C.‎ ‎4.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是(  )‎ A.若AC与BD共面,则AD与BC共面 B.若AC与BD是异面直线,则AD与BC是异面直线 C.若AB=AC,DB=DC,则AD=BC D.若AB=AC,DB=DC,则AD⊥BC 解析:选C.A中,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;B中,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;C中,若AB=AC,DB=DC,AD不一定等于BC;D中,若AB=AC,DB=DC,可以证明AD⊥BC.‎ - 8 -‎ ‎5.(2019·温州市高考数学二模)棱长为2的正方体ABCDA1B1C1D1中,E为棱CC1的中点,点P,Q分别为平面A1B1C1D1和线段B1C上的动点,则△PEQ周长的最小值为(  )‎ A.2 B. C. D.2 解析:选B.由题意,△PEQ周长取得最小值时,P在B1C1上,在平面B1C1CB上,设E关于B1C的对称点为M,关于B1C1的对称点为N,则EM=,EN=2,∠MEN=135°,‎ 所以MN==.‎ ‎6.(2019·杭州市学军中学高考数学模拟)如图,在三棱柱ABCA1B1C1中,点P在平面A1B1C1内运动,使得二面角PABC的平面角与二面角PBCA的平面角互余,则点P的运动轨迹是(  )‎ A.一段圆弧 ‎ B.椭圆的一部分 C.抛物线 ‎ D.双曲线的一支 解析:选D.不妨令三棱柱ABCA1B1C1为直三棱柱,且底面是以B为直角的直角三角形,令侧棱长为m,以B为坐标原点,BA方向为x轴,BC方向为y轴,BB1方向为z轴,建立空间直角坐标系,‎ 设P(x,y,m),所以Q(x,y,0),过点Q作以QD⊥AB于点D,作QE⊥BC于点E,‎ 则∠PDQ即是二面角PABC的平面角,∠PEQ即是二面角PBCA的平面角,‎ 所以tan∠PDQ=,tan∠PEQ=,‎ 又二面角PABC的平面角与二面角PBCA的平面角互余,所以tan∠PDQ·tan∠PEQ=1,即·=1,所以QD·QE=PQ2=m2,因Q(x,y,0),所以QE=x,QD=y,‎ 所以有xy=m2,所以y=(x>0),即点Q的轨迹是双曲线的一支,所以点P的轨迹是双曲线的一支.故选D.‎ ‎7.(2019·绍兴诸暨高考一模)已知三棱锥ABCD的所有棱长都相等,若AB与平面α所成角等于,则平面ACD与平面α所成角的正弦值的取值范围是(  )‎ - 8 -‎ A. B. C. D. 解析:选A.因为三棱锥ABCD的所有棱长都相等,‎ 所以三棱锥ABCD为正四面体,如图:‎ 设正四面体的棱长为2,取CD中点P,连接AP,BP,‎ 则∠BAP为AB与平面ADC所成角.‎ AP=BP=,可得cos∠BAP=,sin∠BAP=.‎ 设∠BAP=θ.‎ 当CD与α平行且AB在平面ACD上面时,平面ACD与平面α所成角的正弦值最小,为sin=sincos θ-cossin θ=×-×=;‎ 当CD与α平行且AB在平面ACD下面时,平面ACD与平面α所成角的正弦值最大,为sin=sincos θ+cossin θ=×+×=,所以平面ACD与平面α所成角的正弦值的取值范围是.故选A.‎ ‎8.(2019·浙江“七彩阳光”新高考联盟联考)已知直角三角形ABC的两条直角边AC=2,BC=3,P为斜边AB上一点,沿CP将此三角形折成直二面角ACPB,此时二面角PACB的正切值为,则翻折后AB的长为(  )‎ A.2     B. C.     D. 解析:选D.如图,在平面PCB内过P作直二面角ACPB的棱CP的垂线交边BC于E, 则EP⊥平面ACP.‎ 于是在平面PAC中过P作二面角PACB的棱AC的垂线,垂足为D,连接DE,则∠PDE为二面角PACB的平面角,且tan∠PDE==,设DP=a,则EP=a.‎ 如图,设∠BCP=α,则∠ACP=90°-α,则在直角三角形DPC中,PC==,又在直角三角形PCE中,tan α=,则·tan α=a,sin α=cos2α,所以α=45°,因为二面角ACPB为直二面角,所以cos∠ACB=cos∠ACP·cos∠BCP,于是=cos∠ACP·sin∠ACP=,解得AB=.‎ - 8 -‎ ‎9.(2019·台州市书生中学月考)如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,PD=AD=DC=2AB,则异面直线PC与AB所成角的大小为________;直线PB与平面PDC所成角的正弦值为________.‎ 解析:因为AB∥CD,所以∠PCD即为异面直线PC与AB所成的角,显然三角形PDC为等腰直角三角形,所以∠PCD=.设AB=1,则可计算得,PB=3,而点B到平面PDC的距离d等于AD的长为2,所以直线PB与平面PDC所成角的正弦值为=.‎ 答案:  ‎10.如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.‎ 解析:如图所示,连接DN,取线段DN的中点K,连接MK,CK.‎ 因为 M为AD的中点,所以MK∥AN,‎ 所以∠KMC即为异面直线AN,CM所成的角.‎ 因为 AB=AC=BD=CD=3,‎ AD=BC=2,N为BC的中点,‎ 由勾股定理易求得AN=DN=CM=2,‎ 所以MK=.‎ 在Rt△CKN中,CK= =.‎ 在△CKM中,由余弦定理,得 cos∠KMC==.‎ 答案: ‎11.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是________.‎ 解析:对于①,因为PA⊥平面ABC,所以PA⊥BC.因为AB为⊙O的直径,所以BC⊥AC,所以BC⊥平面PAC,又PC⊂平面PAC,所以BC⊥PC;对于②,因为点M为线段PB的中点,所以OM∥PA,因为PA⊂平面PAC,所以OM∥平面PAC;对于③,由①知BC⊥平面PAC,所以线段BC的长即是点B到平面PAC的距离,故①②③都正确.‎ 答案:①②③‎ ‎12.(2019·杭州市高三期末)在△ABC中,∠ABC=,边BC在平面α内,‎ - 8 -‎ 顶点A在平面α外,直线AB与平面α所成角为θ.若平面ABC与平面α所成的二面角为,则sin θ=________.‎ 解析:过A作AO⊥α,垂足是O,过O作OD⊥BC,交BC于D,连接AD,‎ 则AD⊥BC,所以∠ADO是平面ABC与平面α所成的二面角,即∠ADO=,∠ABO是直线AB与平面α所成的角,即∠ABO=θ,‎ 设AO=,‎ 所以AD=2,在Rt△ADB中,‎ ‎∠ABD=,所以AB==,‎ 所以sin θ===.‎ 答案: ‎13.(2019·浙江名校新高考联盟联考)如图,已知正四面体DABC,P为线段AB上的动点(端点除外),则二面角DPCB的平面角的余弦值的取值范围是________.‎ 解析:当点P从A运动到B,二面角DPCB的平面角逐渐增大,二面角DPCB的平面角最小趋近于二面角DACB的平面角,最大趋近于二面角DBCA的平面角的补角,故余弦值的取值范围是.‎ 答案: ‎14.(2019·义乌市高三月考)如图,边长为2的正△ABC顶点A在平面γ上,B,C在平面γ的同侧,M为BC的中点,若△ABC在平面γ上的射影是以A为直角顶点的△AB1C1,则M到平面γ的距离的取值范围是________.‎ 解析:设∠BAB1=α,∠CAC1=β,则AB1=2cos α,AC1=2cos β,BB1=2sin α,CC1=2sin β,则点M到平面γ的距离d=sin α+sin β,又AM=,则B1C1=2,即cos2α+cos2β=3-(sin2α+2sin αsin β+sin2β).也即sin αsin β=,所以d=sin α+sin β=sin α+≥,当sin α=1时,d=,则≤d<.‎ - 8 -‎ 答案: ‎15.(2019·宁波诺丁汉大学附中高三期中考试)三棱锥ABCD中,E是BC的中点,AB=AD,BD⊥DC.‎ ‎(1)求证:AE⊥BD;‎ ‎(2)若DB=2DC=AB=2,且二面角ABDC为60°,求AD与平面BCD所成角的正弦值.‎ 解:(1)证明:如图,取BD的中点F,连接EF,AF,‎ 因为E为BC中点,F为BD中点,所以FE∥DC.‎ 又BD⊥DC,所以BD⊥FE.‎ 因为AB=AD,所以BD⊥AF.‎ 又AF∩FE=F,AF,FE⊂平面AFE,‎ 所以BD⊥平面AFE,又AE⊂平面AFE,‎ 所以AE⊥BD.‎ ‎(2)由(1)知BD⊥AF,BD⊥EF 所以∠AFE即为二面角ABDC的平面角,‎ 所以∠AFE=60°.因为AB=AD=,BD=2,‎ 所以△ABD为等腰直角三角形,故AF=BD=1,‎ 又FE=DC=,‎ 所以AE2=AF2+FE2-2AF·FE·cos∠AFE=1+-2×1××cos 60°=,即AE=,‎ 所以AE2+FE2=1=AF2,所以AE⊥FE,‎ 又由(1)知BD⊥AE,且BD∩FE=F,BD⊂平面BDC,FE⊂平面BDC,‎ 所以AE⊥平面BDC,‎ 所以∠ADE就是AD与平面BCD所成角,‎ 在Rt△AED中,AE=,AD=,‎ 所以AD与平面BCD所成角的正弦值 sin∠ADE==.‎ ‎16.(2019·浙江二模)如图,在四棱锥EABCD中,平面CDE⊥平面ABCD,∠DAB=∠ABC=90°,AB=BC=1,AD=ED=3,EC=2.‎ ‎(1)证明:AB⊥平面BCE;‎ ‎(2)求直线AE与平面CDE所成角的正弦值.‎ - 8 -‎ 解:(1)证明:因为∠DAB=∠ABC=90°,‎ 所以四边形ABCD是直角梯形,‎ 因为AB=BC=1,AD=ED=3,EC=2.‎ 所以CD==,‎ 所以CE2+DC2=DE2,所以EC⊥CD,‎ 因为平面EDC⊥平面ABCD,平面EDC∩平面ABCD=DC,‎ 所以CE⊥平面ABCD,‎ 所以CE⊥AB,又AB⊥BC,BC∩CE=C,‎ 所以AB⊥平面BCE.‎ ‎(2)过A作AH⊥DC,交DC于H,‎ 则AH⊥平面DCE,连接EH,‎ 则∠AEH是直线AE与平面DCE所成的角,‎ 因为×DC×AH=×AB-×AB×BC,‎ 所以AH==,‎ AE==,‎ 所以sin∠AEH=,‎ 所以直线AE与平面CDE所成角的正弦值为.‎ ‎17.(2019·绍兴诸暨高考二模)四棱锥PABCD中,PA⊥平面ABCD,E为AD的中点,四边形ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.‎ ‎(1)求证:FG∥平面PDC;‎ ‎(2)求二面角FCDG的正切值.‎ 解:(1)证明:延长BG交AD于点D,‎ 因为==,‎ 而==,所以==,‎ 所以FG∥PD.因为FG⊄平面PDC,PD⊂平面PDC,‎ 所以FG∥平面PDC.‎ ‎(2)过点F作FM⊥AB于点M,易知FM⊥平面ABCD,‎ 过M作MN⊥CD于点N,连接FN,则CD⊥平面FMN,‎ - 8 -‎ 所以CD⊥MN,CD⊥FN,‎ 所以∠FNM即为所求二面角的平面角,‎ 不妨令PA=AB=1,则FM=,MN=,‎ 所以tan α=.‎ ‎18.(2019·浙江名校协作体高三质检)如图,在四棱锥PABCD中,底面ABCD为梯形,AD∥BC,AB=BC=CD=1,DA=2,DP⊥平面ABP,O,M分别是AD,PB的中点.‎ ‎(1)求证:PD∥平面OCM;‎ ‎(2)若AP与平面PBD所成的角为60°,求线段PB的长.‎ 解:(1)证明:设BD交OC于N,连接MN,OB,‎ 因为O为AD的中点,AD=2,所以OA=OD=1=BC.‎ 又因为AD∥BC,所以四边形OBCD为平行四边形,所以N为BD的中点,因为M为PB的中点,所以MN∥PD.‎ 又因为MN⊂平面OCM,PD⊄平面OCM,‎ 所以PD∥平面OCM.‎ ‎(2)由四边形OBCD为平行四边形,知OB=CD=1,‎ 所以△AOB为等边三角形,所以∠A=60°,‎ 所以BD==,即AB2+BD2=AD2,‎ 即AB⊥BD.‎ 因为DP⊥平面ABP,所以AB⊥PD.‎ 又因为BD∩PD=D,所以AB⊥平面BDP,‎ 所以∠APB为AP与平面PBD所成的角,即∠APB=60°,‎ 所以PB=.‎ - 8 -‎