- 45.00 KB
- 2021-06-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
《概率的意义》教学设计
一、教材分析:
本节是义务教育课程标准实验教科书九年级上册第二十二章概率初步的内容,在上两个课时里学习了随机事件的概念以及形成了对随机事件发生可能性大小的定性分析,在总结了随机事件发生可能性大小的特点和影响随机事件发生可能性大小的客观条件的基础上来研究概率的意义。
二、教学目标:
知识与技能:
1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值;
2.在具体情境中了解概率的意义。
教学思考:
让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型,初步理解频率与概率的关系。
解决问题:
在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力,锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念。
情感态度:
1.在合作探究学习过程中,激发学生学习的好奇心与求知欲。体验数学的价值与学习的乐趣。
2.通过概率意义教学,渗透辩证思想教育。
三、教学重、难点:
教学重点:在具体情境中了解概率意义.
教学难点:对频率与概率关系的初步理解
四、教学方法:实验探究,归纳总结
五、教具、学具:壹元硬币数枚、多媒体课件
六、教学媒体:多媒体
七、教学过程:
活动(一)创设情境,引入新课
6
教师提出问题:同学们都看过兵乓球比赛吧!在每次比赛之前运动员要选择场地的位置,你知道他们是如何决定的么?
教师提出实际生活中的问题,学生会很自然地想到用抛硬币的方法。
教师追问:为什么用这种方法呢?
学生:这样做公平,能保证可能性一样大。
教师归纳:用抛掷硬币的方法选择场地是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜想到这两个随机事件发生的可能性是一样的,各占一半,那么,这种直觉是否真的是正确的呢?
在本次活动中教师应重点关注:
(1)学生是否会想到用抛硬币的方法来解决;
(2)学生是否有进一步探究的欲望和参与意识。
设计意图:现实中不确定现象是大量存在的, 新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础。
活动(二)动手实践,合作探究
1.教师布置实验任务:
把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行;每组掷币50次,以实事求是的态度,认真统计“正面朝上” 的频数及 “正面朝上”的频率,整理试验的数据,并记录下来。
2.教师巡视学生分组试验情况,各组汇报实验结果。
由于试验次数较少,所以有可能有些组实验获得的“正面朝上”的频率与先前的猜想有出入。
3.教师提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因。
4.全班交流,把各组测得数据一一汇报,教师将各组数据记录在黑板上。全班同学对数据进行累计,按照书上P114要求填好22-2.并根据所整理的数据,在22.1-1图上标注出对应的点,完成统计图。
6
表22-2
抛掷次数
50
100
150
200
250
300
350
400
450
500
“正面向上”的频数
“正面向上”的频率
0.5
1
正面向上的频率
投掷次数n
100
50
250
150
500
450
300
350
200
图22.1-1
教师提出问题:(投影出示),观察统计表与统计图,你发现“正面向上”的频率有什么规律?随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?
其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷硬币试验的数据统计表(看书P115表22-3).
表22-3
试验者
抛掷次数(n)
“正面朝上”次数(m)
“正面向上”频率(m/n)
棣莫弗
2048
1061
0.518
布丰
4040
2048
0.5069
费勒
10000
4979
0.4979
皮尔逊
12000
6019
0.5016
皮尔逊
24000
12012
0.5005
为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性——
6
大量重复试验中,事件发生的频率逐渐稳定到某个常数附近 .
5.下面我们能否研究一下“反面向上”的频率情况?
学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.
在本次活动中教师应重点关注:
(1)学生记录试验结果是否真实;
(2)学生能否分析出产生差异的原因;
(3)在填写统计表与统计图遇到的困难,教师应给予帮助和指导;
(4)是否敢于表达自己的观点与感受,养成实事求是的科学态度;
(5)学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.
设计意图:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.
活动(三)归纳概括,揭示新知
教师归纳:由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半). 以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.
那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p
接着教师提出问题:
(1)频率与概率有什么区别与联系;
(2)当事件A是必然发生的事件时,P(A)是多少?当事件A是不可能发生的事件时,P(A)是多少?当事件A是随机事件时,P(A)在什么范围?
6
学生思考,讨论,相互交流,教师帮助理解,最后学生代表发言,教师给予适当的鼓励。
在本次活动中教师应让学生明白:
(1)一般地,频率是随着实验者、实验次数的改变而变化的;
(2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;
(3)必然发生的事件和不可能发生的事件可以看作是随机事件的两种极端情形。
设计意图:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破。为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.
活动(四)巩固练习,深化理解
1.教科书第117页第一题;
2.天气预报说下星期一降水概率是90%,下星期三降水概率是10%,有为同学说:下星期一肯定下雨,下星期三肯定不下雨,你认为他说的对么?
问题1学生可独立思考,教师给出正确结果;问题2可给学生交流的机会,让他们根据自己的理解,进可能的发表意见,或相互辩论,教师有针对地点评并适时给予表扬和鼓励,教师应强调概率并不提供准确无误的结论,这是由随机现象的本质所确定的。
设计意图:通过练习活动,从不同角度,不同视角进一步加深对概率意义的理解,使学生感悟数学来源于生活并应用生活的道理。
八、小结:
学生互相交流这节课的体会与收获,教师还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义。
设计意图:通过小结培养学生良好的评价和反思的意识,使他们在数学活动中获得成功的体验,本节课的内容得到巩固和发展。
6
九、作业:
1.课本第118页第4、5题
2.预习课本第120至122页
3.写好数学日记,可以从以下几点入手:
(1)你如何理解概率的意义;
(2)学习概率对我们有用么?
(3)这节课你那学的不好,你准备怎么解决。等等。
十、教学反思:
本节课结合具体教学内容教师采用“创设问题情境”——“猜测、实验、验证”——“合作交流、总结”的模式展开,让学生在解决问题过程中经历知识的发生、发展、形成的过程,把知识的发现权交给学生,使学生在动手实验、探索交流过程中真正掌握基本的数学知识和基本技能,获得广泛的数学活动经验,使学生在思维能力、情感态度与价值观等方面得到进步和发展。
6
相关文档
- 高中数学:三-1《相似三角形的判定》2021-06-252页
- 高中数学:第二章《圆锥曲线与方程》2021-06-258页
- 高中数学选修2-3课件1_3_1《二项式2021-06-2519页
- 高中数学人教A版必修四全册教案3_22021-06-252页
- 高中数学选修第2章2_4_2同步练习2021-06-253页
- 2020年高中数学 第二章 解三角形2021-06-255页
- 高中数学必修2教案:空间点 直线 平2021-06-255页
- 高中数学必修1教案:第二章(第7课时)函2021-06-255页
- 高中数学必修2教案:2_2_2面面平行教2021-06-257页
- 高中数学必修2教案:直线与圆的位置2021-06-251页