- 175.50 KB
- 2021-06-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
3.2简单的三角恒等变换(一)
一.教学目标
1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。
2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。
3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
二、教学重点与难点
教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
三、教学设想:
(一)复习:三角函数的和(差)公式,倍角公式
(二)新课讲授:
1、由二倍角公式引导学生思考:有什么样的关系?
学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.
例1、试以表示.
解:我们可以通过二倍角和来做此题.
因为,可以得到;
因为,可以得到.
又因为.
思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.
例2.已知,且在第二象限,求的值。
例3、求证:
(1)、;
(2)、.
证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.
;.
两式相加得;
即;
(2)由(1)得①;设,
那么.
把的值代入①式中得.
思考:在例3证明中用到哪些数学思想?
例3证明中用到换元思想,(1)式是积化和差的形式,
(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.
三.练习:P142面1、2、3题。
四.小结:要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
五.作业:《习案》三十三。
相关文档
- 高中数学必修4教案:7_备课资料(1_4_22021-06-255页
- 高中数学必修4教案:6_备课资料(1_4_12021-06-252页
- 高中数学必修4教案:1_3三角函数的诱2021-06-244页
- 2020版高考数学一轮复习(讲义·理) 2021-06-2411页
- 专题21+简单的三角恒等变换(押题专2021-06-247页
- 高中数学必修4教案:8_备课资料(2_4_22021-06-243页
- 高科数学专题复习课件:第四章 4_5 2021-06-2449页
- 高中数学必修4教案:2_1平面向量的实2021-06-244页
- 【数学】2019届一轮复习人教A版(文)42021-06-2414页
- 【数学】2019届理科一轮复习北师大2021-06-247页