- 73.00 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
三 反证法与放缩法
[课时作业]
[A组 基础巩固]
1.如果两个正整数之积为偶数,则这两个数( )
A.两个都是偶数
B.一个是奇数,一个是偶数
C.至少一个是偶数
D.恰有一个是偶数
解析:假设这两个数都是奇数,则这两个数的积也是奇数,这与已知矛盾,所以这两个数至少一个为偶数.
答案:C
2.设x>0,y>0,A=,B=+,则A与B的大小关系为( )
A.A≥B B.A≤B
C.A>B D.A1 D.M与1大小关系不定
解析:M是210项求和,M=+++…+<+++…+=1,故选B.
答案:B
5
5.若f(x)=x,a,b都为正数,A=f,G=f(), H=f,则( )
A.A≤G≤H B.A≤H≤G
C.G≤H≤A D.H≤G≤A
解析:∵a,b为正数,∴≥=≥=,
又∵f(x)=x为单调减函数,
∴f≤f()≤f,
∴A≤G≤H.
答案:A
6.某同学准备用反证法证明如下一个问题:函数f(x)在[0,1]上有意义,且f(0)=f(1),如果对于不同的x1,x2∈[0,1],都有|f(x1)-f(x2)|<|x1-x2|,求证:
|f(x1)-f(x2)|<.那么它的假设应该是________.
答案:|f(x1)-f(x2)|≥
7.已知|a|≠|b|,m=,n=,则m,n之间的大小关系是________.
解析:m=≤=1,
n=≥=1.
答案:m≤n
8.设a>0,b>0,M=,N=+,则M与N的大小关系是________.
解析:∵a>0,b>0,
∴N=+>+==M.
∴M1,求证:a,b,c,d中至少有一个是负数.
证明:假设a,b,c,d都是非负数.
由a+b=c+d=1知:a,b,c,d∈[0,1].
从而ac≤≤,bd≤≤.
5
∴ac+bd≤=1.即ac+bd≤1.与已知ac+bd>1矛盾,∴a,b,c,d中至少有一个是负数.
10.求证:1++++…+<3(n∈N+).
证明:由<=(k是大于2的自然数),
得1++++…+<1+1++++…+=
1+=3-<3.
∴原不等式成立.
[B组 能力提升]
1.已知x1>0,x1≠1且xn+1=(n=1,2,…).试证:数列{xn}或者对任意正整数n都满足xnxn+1.当此题用反证法否定结论时,应为( )
A.对任意的正整数n,有xn=xn+1
B.存在正整数n,使xn=xn+1
C.存在正整数n,使xn≥xn-1且xn≥xn+1
D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0
解析:“xnxn+1”的对立面是“xn=xn+1”,“任意一个”的反面是“存在某一个”.
答案:B
2.若α∈,M=|sin α|,N=|cos α|,P=|sin α+cos α|,
Q= ,则它们之间的大小关系为( )
A.M>N>P>Q B.M>P>N>Q
C.M>P>Q>N D.N>P>Q>M
解析:∵α∈(π,π),∴0>sin α>cos α.
∴|sin α|<|cos α|,
∴P=|sin α+cos α|=(|sin α|+|cos α|)
5
>(|sin α|+|sin α|)=|sin α|=M.
P=|sin α|+|cos α|
< (|cos α|+|cos α|)=|cos α|=N.
∴N>P>M.
对于Q= = <=P.
而Q=> =|sin α|=M.
∴N>P>Q>M.
答案:D
3.用反证法证明“已知平面上有n(n≥3)个点,其中任意两点的距离最大为d,距离为d的两点间的线段称为这组点的直径,求证直径的数目最多为n条”时,假设的内容为________.
解析:对“至多”的否定应当是“至少”,二者之间应该是完全对应的,所以本题中的假设应为“直径的数目至少为n+1条”.
答案:直径的数目至少为n+1条
4.若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少有一个值c,使f(c)>0, 则实数p的取值范围是________.
解析:假设在 [-1,1]内没有值满足f(c)>0,
则所以
所以p≤-3或p≥,取补集为p∈.
故实数p的取值范围是.
答案:
5.已知01且y(2-z)>1且z(2-x)>1均成立,
则三式相乘有:xyz(2-x)(2-y)(2-z)>1.
①
由于01且y(2-z)>1且z(2-x)>1.
∴++>3.
③
又++≤++=3④
④与③矛盾,故假设不成立.
∴原题设结论成立.
6.已知数列{an}满足a1=2,an+1=22·an(n∈N+),
(1)求a2,a3并求数列{an}的通项公式;
(2)设cn=,求证:c1+c2+c3+…+cn<.
解析:(1)∵a1=2,an+1=2(1+)2·an(n∈N+),
∴a2=2(1+)2·a1=16,a3=2(1+)2·a2=72.
又∵=2·,n∈N+,
∴{}为等比数列.
∴=·2n-1=2n,
∴an=n2·2n.
(2)证明:cn==,
∴c1+c2+c3+…+cn
=+++…+<+++·(++…+)
=+·<+·=+
==<=,所以结论成立.
5
相关文档
- 2018-2019学年广西南宁市马山县金2021-06-3011页
- 高中数学必修5教案:1_2_12021-06-304页
- 湖北省黄冈中学高中数学竞赛(预赛)训2021-06-307页
- 2018-2019学年福建省宁德市高中同2021-06-309页
- 高中数学必修1教案:第二章(第11课时)2021-06-304页
- 高中数学:第三章《导数及其应用》教2021-06-303页
- 高中数学必修1教案:第四章(第17课时)2021-06-306页
- 2020年高中数学第一章三角函数12021-06-306页
- 高中数学人教A版必修一教学训练(教2021-06-304页
- 高中数学必修2全册同步检测:2-3-22021-06-3010页