- 168.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2. 2.1 向量的加法运算及其几何意义
教学目标:
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
学 法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.
教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学过程:
一、设置情景:
1、 复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
A B C
2、 情景设置:
(1)某人从A到B,再从B按原方向到C,
C A B
则两次的位移和:
(2)若上题改为从A到B,再从B按反方向到C,
A B
C
则两次的位移和:
(3)某车从A到B,再从B改变方向到C,
A B
C
则两次的位移和:
(4)船速为,水速为,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b,规定: a + 0-= 0 +a
a
a
A
B
C
a+b
a+b
a
a
b
b
a
b
b
a+b
a
探究:(1)两相向量的和仍是一个向量;
(2)当向量与不共线时,+的方向不同向,且|+|<||+||;
O
A
B
a
a
a
b
b
b
(3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例一、已知向量、,求作向量+
作法:在平面内取一点,作 ,则.
4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同? 验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:+=+
5.向量加法的结合律:(+) +=+ (+)
证:如图:使, ,
则(+) +=,+ (+) =
∴(+) +=+ (+)
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P94—95)略
练习:P95
四、小结
1、向量加法的几何意义;
2、交换律和结合律;
3、注意:|+| ≤ || + ||,当且仅当方向相同时取等号.
五、课后作业:
P103第2、3题
六、板书设计(略)
2.2.1 向量的加法运算及其几何意义
课前预习学案
预习目标:
通过复习提问回顾向量定义及有关概念;利用问题情景提出向量加法运算、给出实际背景。
预习内容:
1、 复习:提问向量的定义以及有关概念。
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
A B C
2、情景设置:
(1)某人从A到B,再从B按原方向到C,
C A B
则两次的位移和: 。
(2)若上题改为从A到B,再从B按反方向到C,
A B
C
则两次的位移和: 。
(3)某车从A到B,再从B改变方向到C,
A B
C
则两次的位移和: 。
(4)船速为,水速为,则两速度和:
。
3、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点
疑惑内容
课内探究学案
学习目标
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
学习过程:
1、向量的加法: 叫做向量的加法.
2、三角形法则(“ ”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b,规定: 。 A
B
C
a+b
a+b
a
a
b
b
a
b
b
a+b
a
探究:(1)两相向量的和仍是 ;
(2)当向量与不共线时,+的方向 ,且|+| ||+||;
O
A
B
a
a
a
b
b
b
(3)当与同向时,则+、、 且|+| ||+||,当与反向时,若||>||,则+的方向与相同,且|+| ||-||;若||<||,则+的方向与相同,且|+b| ||-||.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例1、已知向量、,求作向量+
作法:
4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同?
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:
5.向量加法的结合律:
证:
6、应用举例:
例二(P94—95)
练习:P95
课后练习与提高
1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度.
2、一艘船距对岸,以的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.
3、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.
4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h
5、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,|F|=10N求F1和F2的大小.
6、用向量加法证明:两条对角线互相平分的四边形是平行四边形
参考答案:略
相关文档
- 高中数学必修4教案:1_4_3正切函数的2021-06-304页
- 高中数学必修4教案:7_备课资料(1_4_22021-06-255页
- 高中数学必修4教案:6_备课资料(1_4_12021-06-252页
- 高中数学必修4教案:1_3三角函数的诱2021-06-244页
- 高中数学必修4教案:8_备课资料(2_4_22021-06-243页
- 高中数学必修4教案:2_1平面向量的实2021-06-244页
- 高中数学必修4教案:3_备课资料(3_1_32021-06-242页
- 高中数学必修4教案:2_示范教案(3_1_22021-06-2416页
- 高中数学必修4教案:1_备课资料(1_1_12021-06-241页
- 高中数学必修4教案:6_示范教案(2_3_42021-06-248页