• 556.00 KB
  • 2022-03-31 发布

七年级下数学课件《互逆命题》课件1_苏科版

  • 15页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
互逆定理 回顾1、命题的概念:可以判断正确或错误的句子叫做命题.2、命题都有两部分:题设和结论例如:两直线平行,内错角相等;内错角相等,两直线平行;都是命题.注意:问句和几何作法不是命题! 我能行观察上面三组命题,你发现了什么?1、两直线平行,内错角相等;3、如果小明患了肺炎,那么他一定会发烧;4、如果小明发烧,那么他一定患了肺炎;2、内错角相等,两直线平行;5、平行四边形的对角线互相平分;6、对角线互相平分的四边形是平行四边形.说出下列命题的题设和结论: 一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.上面两个命题的题设和结论恰好互换了位置.命题“两直线平行,内错角相等”的题设为两直线平行;结论为内错角相等.因此它的逆命题为内错角相等,两直线平行. 练习1:指出下列命题的题设和结论,并说出它们的逆命题.1、如果一个三角形是直角三角形,那么它的两个锐角互余.题设:一个三角形是直角三角形.结论:它的两个锐角互余.逆命题:如果一个三角形的两个锐角互余,那么这个三角形是直角三角形. 2、等边三角形的每个角都等于60°题设:一个三角形是等边三角形.结论:它的每个角都等于60°逆命题:如果一个三角形的每个角都等于60°,那么这个三角形是等边三角形.3、全等三角形的对应角相等.题设:两个三角形是全等三角形.结论:它们的对应角相等.逆命题:如果两个三角形的对应角相等,那么这两个三角形全等. 4、到一个角的两边距离相等的点,在这个角的平分线上.题设:一个点到一个角的两边距离相等.结论:它在这个角的平分线上.逆命题:角平分线上一点到角两边的距离相等.5、线段的垂直平分线上的点到这条线段的两个端点的距离相等.题设:一个点在一条线段的垂直平分线上.结论:它到这条线段的两个端点的距离相等.逆命题:到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上. 每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题.但是原命题正确,它的逆命题未必正确.例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题. 练习2、举例说明下列命题的逆命题是假命题.(2)如果两个角都是直角,那么这两个角相等.逆命题:如果两个角相等,那么这两个角是直角.例如10能5整除,但它的个位数是0.(1)如果一个整数的个位数字是5,那么这个整数能被5整除.逆命题:如果一个整数能被5整除,那么这个整数的个位数字是5.例如60°=60°,但这两个角不是直角. 练习3:在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明.例如:1、同旁内角互补,两直线平行.逆命题:两直线平行,同旁内角互补.真2、有两个角相等的三角形是等腰三角形.逆命题:如果一个三角形是等腰三角形,那么它有两个角相等.真 补充练习:说出下列命题的逆命题,并判定逆命题的真假:①既是中心对称,又是轴对称的图形是圆.②有一组对边平行且相等的四边形是平行四边形.③磁悬浮列车是一种高速行驶时不接触地面的交通工具.逆命题:圆既是中心对称,又是轴对称的图形——真命题逆命题:平行四边形有一组对边平行并且相等——真命题逆命题:高速行驶时,不接触地面的交通工具是磁悬浮列车——假命题 例1证明:平行于同一条直线的两条直线平行.已知:如图12-10,直线a、b、c中,b∥a,c∥a.求证:b∥c.证明:作直线d,使它与直线a、b、c都相交.∵b∥a(已知),∴∠2=∠1(两直线平行,同位角相等).∵c∥a(已知),∴∠3=∠1(两直线平行,同位角相等).∴∠2=∠3(等量代换).∴b∥c(同位角相等,两直线平行). 例2证明:直角三角形的两个锐角互余.已知:如图12-11,在△ABC中,∠C=90°.求证:∠A+∠B=90°.证明:在△ABC中,∠A+∠B+∠C=180°(三角形三个内角和等于180°).∴∠A+∠B=180°-∠C(等式性质).∵∠C=90°.(已知),∴∠A+∠B=180°-90°(等量代换).即∠A+∠B=90°. 1、写出下列命题的逆命题,并判断它是真是假.(1)如果x=y,那么x2=y2;(2)如果一个三角形有一个角是钝角,那么它的另外两个角是锐角; 小结这节课我们学到了什么?①逆命题、逆定理的概念.②能写出一个命题的逆命题.③在证明假命题时会用举反例说明.