- 199.50 KB
- 2021-10-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
4.4 用尺规作三角形
1.已知两边及其夹角会作三角形;(重点,难点)
2.已知两角及其夹边会作三角形.(重点,难点)
3.已知三边会作三角形.(重点,难点)
一、情境导入
小明在一个工程施工图上看到一个三角形,他想用直尺和圆规画一个与这个三角形全等的三角形,应当怎样画?
二、合作探究
探究点:用尺规作三角形
【类型一】 已知两边及其夹角作三角形
如图,已知∠α和线段m,n.求作△ABC,使∠B=∠α,BA=n,BC=m.
解:作法:1.作∠MBN=α;
2.在射线BN,BM上分别截取BC=m,BA=n;
3.连接AC,则△ABC就是所求作的三角形.[来源:Z§xx§k.Com]
[来源:学*科*网Z*X*X*K]
方法总结:已知两边及其夹角作三角形的理论依据是判定三角形全等的“SAS”,作图时可先作一个角等于已知角,再在角的两边分别截取已知线段长即可.
【类型二】 已知两角及其夹边作三角形[来源:学,科,网][来源:学#科#网]
已知∠α,∠β,线段c.求作△ABC,使得∠ABC=∠α,∠ACB=∠β,BC=c.
解:作法:1.作线段BC=c;
2.在BC的同旁,作∠DBC=∠α,作∠ECB=∠β,DB与EC交于点A.则△ABC就是所求作的三角形.
方法总结:已知两角及其夹边作三角形的理论依据是判定三角形全等的“ASA”,作图时可先作一条边等于已知边,再在这条边的同侧,以边的两个端点为顶点作两个角分别等于已知角即可.
【类型三】 已知三边作三角形
已知三条线段a、b、c,用尺规作出△ABC,使BC=a,AC=b、AB=c.
解:作法:1.作线段BC=a;
2.以点C为圆心,以b为半径画弧,再以B为圆心,以c为半径画弧,两弧相交于点A;
3.连接AC和AB,则△ABC即为所求作的三角形,如图所示.[来源:Zxxk.Com]
方法总结:已知三角形三边的长,根据全等三角形的判定“SSS”,知三角形的形状和大小也就确定了.作三角形相当于确定三角形三个顶点的位置.因此可先确定三角形的一条边(即两个顶点),再分别以这条边的两个端点为圆心,以已知线段长为半径画弧,两弧的交点即为另一个顶点.
三、板书设计
1.已知两边及其夹角作三角形
2.已知两角及其夹边作三角形
3.已知三边作三角形
本节课学习了有关三角形的作图,主要包括两种基本作图:作一条线段等于已知线段,作一个角等于已知角.作图时,鼓励学生一边作图,一边用几何语言叙述作法,培养学生的动手能力、语言表达能力