解方程(课时) 2页

  • 42.00 KB
  • 2021-10-26 发布

解方程(课时)

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎ ‎ ‎5.2解方程 (1)‎ 教学目标:‎ ‎1、学会利用等式性质1解方程;‎ ‎2、理解移项的概念;‎ ‎3、学会移项。‎ 教学重点:利用等式性质1解方程及移项法则;‎ 教学难点:利用等式性质1来解释方程的变形。‎ 教学准备:‎ ‎1、投影仪、投影片。‎ ‎2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。‎ 教学过程:‎ ‎(一)引入新课:‎ ‎1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?‎ 方程是等式,但必须含有未知数;‎ 等式不一定含有未知数,它不一定是方程。‎ ‎2、下面的一些式子是否为方程?这些方程又有何特点?‎ ‎① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2‎ 由学生小议后回答:①、④是方程。‎ 分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。‎ 我们先来研究最简单的(只含有一个未知数的)的一元一次方程。‎ ‎3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。‎ 注意:一次方程可以含有两个或两个以上的未知数:如上例的④。‎ ‎4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。‎ ‎5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)‎ ‎① 2x+3=11②y2=16③x+y=2④3y-1=4y ‎6、什么叫方程的解?怎样解方程?‎ 关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程 ‎(二)、讲解新课:‎ ‎1、 等式性质1:‎ 出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。‎ 强调关键词:"两边"、"都"、"同"、"等式"。‎ ‎2、 利用等式性质1解方程:‎ ‎ x+2=5‎ 分析:要把原方程变形成x=?只要把方程两边同时减去2即可。‎ 注意: 解题格式。‎ 例1 解方程5x=7+4x 分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。‎ 2‎ ‎ ‎ ‎(解略)‎ 解完后提问:如何检验方程时的计算有没有错误?(由学生回答)‎ 只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)‎ 观察前面两个方程的求解过程:‎ ‎ x+2=5 5x=7+4x x=5-2 5x-4x=7 ‎ 思考:⑴把+2从方程的一边移到另一边,发生了什么变化?‎ ‎ ⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)‎ ‎3、 移项:‎ 从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。‎ 注意:①移项要变号;‎ ‎ ②移项的实质:利用等式性质1对方程进行变形。‎ 例2 解方程:3x+4=2x+7‎ 解:移项,得3x-2x=7-4,‎ ‎ 合并同类项,得x=3。‎ ‎∴x=3是原方程的解。‎ 归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;‎ ‎②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;‎ ‎③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。‎ 练习:书本105页 1(口答),2(板演),想一想。‎ ‎(三)、课堂小结:‎ ‎①什么是一次方程,一元一次方程?‎ ‎②等式性质1(找关键词);‎ ‎③移项法则;‎ ‎④应用等式性质1的注意点(例2归纳的三条)。‎ ‎(四)、布置作业:见作业本。‎ 2‎