- 240.50 KB
- 2021-10-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第1课时 实 数
【学习目标】
1、 了解立方根的概念,初步学会用根号表示一个数的立方根;
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;
3、体会一个数的立方根的惟一性, 分清一个数的立方根与平方根的区别。[来源:Z*xx*k.Com]
【学习重点和难点】
1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】
一、自主探究
1、填空:(有理数的两种分类)
有理数 有理数
2、 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3 , , , , ,
二、探究新知
1、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。反过来,任何______小数或____________小数也都是有理数
观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数, ____________小数又叫无理数,也是无理数[来源:Zxxk.Com]
结论: _______和_______统称为实数
你能举出一些无理数吗?
2、试一试 把实数分类
像有理数一样,无理数也有正负之分。例如,,是____无理数,,,是____无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类: 实数
3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?
从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______
这样,无理数可以用数轴上的点表示出来
(2)
[来源:Z*xx*k.Com]
总结:①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________
当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______
③ 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
总结 数的相反数是______,这里表示任意____________。一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______
三、边讲边练[来源:学+科+网]
例1、把下列各数分别填入相应的集合里:
正有理数{ }
负有理数{ }
正无理数{ }
负无理数{ }
2、下列实数中是无理数的为( )A. 0 B. C. D.
3、的相反数是 ,绝对值
4、绝对值等于的数是 , 的平方是
5、
6、求绝对值
练习
(一)、判断下列说法是否正确:
1.实数不是有理数就是无理数。 ( )
2.无限小数都是无理数。 ( )
3.无理数都是无限小数。 ( )
4.带根号的数都是无理数。 ( )
5.两个无理数之和一定是无理数。 ( )
6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。( )[来源:学。科。网]
(二)、填空1、
2、
3、比较大小
4、_________
三、我的感悟
这节课我的最大收获是: 我不能解决的问题是:
四、课后反思
相关文档
- 七年级下册数学教案6-3 第2课时 2021-10-262页
- 七年级下册数学同步练习第六章 实2021-10-263页
- 2020七年级数学上册第3章实数32021-10-269页
- 七年级数学下册第6章《实数》检测32021-10-264页
- 人教版数学七年级下册《实数》练习2021-10-261页
- 人教版七年级上册数学实数以及运算2021-10-262页
- 7年级数学教案第6讲:实数和平方根的2021-10-268页
- 2019七年级数学下册 第六章 实数2021-10-263页
- 七年级下册数学教案6-3 第1课时 实2021-10-262页
- 七年级下册数学同步练习第六章 实2021-10-264页