- 179.25 KB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第六章平行四边形4多边形的内角和与外角和(一)
创设现实情境,提出问题1.三角形是如何定义的?2.仿照三角形定义,你能学着给四边形、五边形……边形下定义吗?
实验探究1.三角形的内角和是多少度?你是怎么得出的?2.四边形的内角和是多少?你又是怎样得出的?①、度量;②、拼角;③、将四边形转化成三角形求内角和。
3.在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。4.根据四边形的内角和的求法,你能否求出五边形的内角和呢?
方法总结:
方法1:如图1,连结AD、AC,五边形的内角和为:3×180°=540°。方法2:如图2,连结AC,则五边形内角和为:360°+180°=540°。方法3:如图3,在AB上任取点F,连FC、FD、FE,则五边形的内角和为:4×180-180°=540°。方法4:如图4,在五边形内任取一点O,连结OA、OB、OC、OD、OE,则五边形内角和为:5×180°-360°=540°。
方法5:如图5,在AB上任取一点F,连结FD,则五边形的内角和为:2×360°-180°=540°。方法6:如图6,在五边开外任取一点O,连结OA、OB、OC、OD、OE,则五边形内角和为:4×180°-180°=540°。小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、四边形问题来解决。
5.小组合作,完成下面的表格:01180°122×180°233×180°344×180°(n-3)(n-2)(n-2)×180°
结论:从多边形的一个顶点可以引出(n-3)条对角线,把n边形分成(n-2)个三角形。从而得出:n边形的内角和是(n-2)·180°。
巩固训练1.如图6-24,四边形ABCD中,∠A+∠C=180°,∠B与∠D有怎样的关系?2.一个多边形的内角和为1440°,则它是几边形?3.一个多边形的边数增加1,则它的内角和将如何变化?
拓展延伸想一想:观察图中的多边形,它们的边、角有什么特点?正多边形定义:在平面内,每个内角都相等、每条边也都相等的多边形叫做正多边形。
议一议:①一个多边形的边都相等,它的内角一定都相等吗?②一个多边形的内角都相等,它的边一定都相等吗?
练一练:①正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?②正n边形的内角是多少度?③一个正多边形的每个内角都是150°,求它的边数?
思维升华议一议:剪掉一张长方形纸片的一个角后,纸片还剩几个角?这个多边形的内角和是多少度?与同伴交流.
知识小结1.过本节课的学习,你学到了哪些知识?有何体会?2.在学习多边形的有关概念时,我们使用了由特殊到一般的数学方法,并运用了类比、转化的思想方法。
作业:C.155页习题6.71,2.3题;B.探究五角星的五个角的度数之和;A.设计一个实验(如剪纸、拼图等),说明四边形的内角和是360°。
谢谢!
相关文档
- 八年级下数学课件《分式方程》 (192022-04-0123页
- 八年级下数学课件八年级下册数学课2022-04-0113页
- 八年级下数学课件八年级下册数学课2022-04-0110页
- 八年级下数学课件《分式的加减》 2022-04-0116页
- 八年级下数学课件八年级下册数学课2022-04-0119页
- 八年级下数学课件八年级下册数学课2022-04-0115页
- 八年级下数学课件八年级下册数学课2022-04-0115页
- 八年级下数学课件22-5《菱形》ppt2022-04-0118页
- 八年级下数学课件:19-1-2 函数的图2022-04-0120页
- 八年级下数学课件八年级下册数学课2022-04-0144页