- 62.50 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
14.1.2 幂的乘方
1.知道幂的乘方的意义.
2.会进行幂的乘方计算.
重点
会进行幂的乘方的运算.
难点
幂的乘方法则的总结及运用.
一、复习引入
(1)叙述同底数幂乘法法则,并用字母表示:
(2)计算:①a2·a5·an;②a4·a4·a4.
二、自主探究
1.思考:
根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:
(1)(32)3=32×32×32=3( );
(2)(a2)3=a2·a2·a2=a( );
(3)(am)3=am·am·am=a( ).(m是正整数)
2.小组讨论
对正整数n,你认识(am)n等于什么?能对你的猜想给出验证过程吗?
幂的乘方(am)n=am·am·am…amn个
=am+m+m+…m,sup6(n个m))
=amn
字母表示:(am)n=amn(m,n都是正整数)
语言叙述:幂的乘方,底数不变,指数相乘.
注意:
幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.
三、巩固练习
1.下列各式的计算中,正确的是( )
A.(x3)2=x5 B.(x3)2=x6
C.(xn+1)2=x2n+1 D.x3·x2=x6
2.计算:
(1)(103)5; (2)(a4)4;
(3)(am)2; (4)-(x4)3.
四、归纳小结
幂的乘方的意义:
(am)n=amn.(m,n都是正整数)
五、布置作业
教材第97页练习.
2
运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.
2