- 344.50 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.4 三角形的中位线
一、选择题(本大题共8小题)
1. 如图,DE是△ABC的中位线,则△ABC与△ADE的周长的比是 ( )
A.1:2 B.2:1 C.1:3 D.3:1
第1题图 第2题图 第3题图
2. 如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为( )
A.1 B.2 C. D.1+
3. 如图,DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F,则下列结论正确的是( )
A.EF=CF B.EF=DE C.CF<BD D.EF>DE
4. 一个三角形的周长是36 cm,则以这个三角形各边中点为顶点的三角形的周长是 ( )
A.6 cm B.12 cm C.18 cm D.36 cm
5. 如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
第5题图 第6题图
6. 如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )
A.6 B.5 C.4 D.3[来源:Zxxk.Com]
7. 如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为( )
A.4 B.8 C.2 D.4
第7题图 第8题图 第9题图
8. 在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是( )
A.5 B.7 C.9 D.11
二、填空题(本大题共6小题)
9. 如图,在△ABC中,D、E分别是边AB、AC的中点,BC=8,则DE= .
10. 如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为 m.
第10题图 第11题图 第12题图
11. 如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF= cm.
12. 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .
13. 如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是 .
第13题图 第14题图
14. 如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于 cm.
三、计算题(本大题共4小题)
15. 如图,已知△ABC中,D为AB的中点.
(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若DE=4,求BC的长.
16. 如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.
17. 如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.
(1)求证:AE=AF;
(2)求证:BE=(AB+AC).
18. 如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
参考答案:
一、选择题(本大题共8小题)
1. B
分析:根据三角形中位线定理解答即可。
解:已知DE是△
ABC的中位线,所以D,E分别是AB和AC的中点,根据中位线定理可知△ADE的每一条边都是△ABC的对应边的一半,那么周长也应该是△ABC的一半。故选B.
2. A
分析:由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.
解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,
∴AB=2BC=2.
又∵点D、E分别是AC、BC的中点,
∴DE是△ACB的中位线,
∴DE=AB=1.
故选:A.
3.B
分析:首先根据三角形的中位线定理得出AE=EC,然后根据CF∥BD得出∠ADE=∠F,继而根据AAS证得△ADE≌△CFE,最后根据全等三角形的性质即可推出EF=DE.
解:∵DE是△ABC的中位线,
∴E为AC中点,
∴AE=EC,
∵CF∥BD,
∴∠ADE=∠F,
在△ADE和△CFE中,
∵,
∴△ADE≌△CFE(AAS),
∴DE=FE.
故选B.
4. 解: 如图,点D、E、F分别是AB、AC、BC的中点,
∴DE= BC,DF= AC,EF= AB,
∵原三角形的周长为36,
则新三角形的周长为=18.
故答案为:18.[来源:学,科,网Z,X,X,K]
5. B
分析:根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,
∴AC===10,
∵DE是△ABC的中位线,
∴DF∥BM,DE=BC=3,
∴∠EFC=∠FCM,
∵∠FCE=∠FCM,
∴∠EFC=∠ECF,
∴EC=EF=AC=5,
∴DF=DE+EF=3+5=8.
故选B.
6. D
分析:在Rt△ACB中,根据勾股定理求得BC边的长度,然后由三角形中位线定理知DE=BC.
解:∵在Rt△ACB中,∠ACB=90°,AC=8,AB=10,
∴BC=6.
又∵DE垂直平分AC交AB于点E,
∴DE是△ACB的中位线,
∴DE=BC=3.
故选:D.
7.D
分析:先利用直角三角形斜边中线性质求出AB,再在RT△ABF中,利用30角所对的直角边等于斜边的一半,求出AF即可解决问题.
解:在RT△ABF中,∵∠AFB=90°,AD=DB,DF=4,
∴AB=2DF=8,
∵AD=DB,AE=EC,
∴DE∥BC,
∴∠ADE=∠ABF=30°,
∴AF=AB=4,
∴BF===4.
故选D.
8. B
分析:先根据三角形中位线性质得DF=BC=2,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.
解:∵D、E、F分别为AB、BC、AC中点,
∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,
∴四边形DBEF为平行四边形,
∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.
故选B.
二、填空题(本大题共6小题)
9. 分析:根据三角形的中位线定理得到DE=BC,即可得到答案.
解:∵D、E分别是边AB、AC的中点,BC=8,
∴DE=BC=4.故答案为:4.
10. 分析:根据题意知MN是△ABO的中位线,所以由三角形中位线定理来求AB的长度即可.
解:∵点M、N是OA、OB的中点,
∴MN是△ABO的中位线,
∴AB=AMN.
又∵MN=20m,
∴AB=40m.
故答案是:40.
11. 分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.
解:∵△ABC是直角三角形,CD是斜边的中线,
∴CD=AB,
又∵EF是△ABC的中位线,
∴AB=2CD=2×5=10cm,
∴EF=×10=5cm.故答案为:5
12. 分析:连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.
解:连接CM,
∵M、N分别是AB、AC的中点,
∴NM=CB,MN∥BC,又CD=BD,
∴MN=CD,又MN∥BC,
∴四边形DCMN是平行四边形,
∴DN=CM,
∵∠ACB=90°,M是AB的中点,
∴CM=AB=3,[来源:学。科。网]
∴DN=3,
故答案为:3.[来源:学|科|网Z|X|X|K]
13. 分析:延长线段BN交AC于E,从而构造出全等三角形,(△ABN≌△AEN),进而证明MN是中位线,从而求出CE的长.
解:延长线段BN交AC于E.
∵AN平分∠BAC,
∴∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,
∴△ABN≌△AEN,
∴AE=AB=6,BN=NE,
又∵M是△ABC的边BC的中点,
∴CE=2MN=2×1.5=3,
∴△ABC的周长是AB+BC+AC=6+10+6+3=25。
14.分析:首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF即可解决问题.
解:∵BD=AD,BE=EC,
∴DE=AC=4cm,DE∥AC,
∵CF=FA,CE=BE,
∴EF=AB=3cm,EF∥AB,
∴四边形ADEF是平行四边形,
∴四边形ADEF的周长=2(DE+EF)=14cm.
故答案为14.
三、计算题(本大题共4小题)
15. 分析:(1)作线段AC的垂直平分线即可.
(2)根据三角形中位线定理即可解决.
解:(1)作线段AC的垂直平分线MN交AC于E,点E就是所求的点.
(2)∵AD=DB,AE=EC,
∴DE∥BC,DE=BC,
∵DE=4,
∴BC=8.
16.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;
(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.
证明:(1)∵点D,E,F分别是AB,BC,CA的中点,
∴DE、EF都是△ABC的中位线,
∴EF∥AB,DE∥AC,
∴四边形ADEF是平行四边形;
(2)∵四边形ADEF是平行四边形,
∴∠DEF=∠BAC,
∵D,F分别是AB,CA的中点,AH是边BC上的高,
∴DH=AD,FH=AF,
∴∠DAH=∠DHA,∠FAH=∠FHA,
∵∠DAH+∠FAH=∠BAC,
∠DHA+∠FHA=∠DHF,
∴∠DHF=∠BAC,
∴∠DHF=∠DEF.
17.分析:(1)欲证明AE=AF,只要证明∠AEF=∠AFE即可.
(2)作CG∥EM,交BA的延长线于G,先证明AC=AG,再证明BE=EG即可解决问题.
证明:(1)∵DA平分∠BAC,
∴∠BAD=∠CAD,
∵AD∥EM,
∴∠BAD=∠AEF,∠CAD=∠AFE,
∴∠AEF=∠AFE,
∴AE=AF.
(2)作CG∥EM,交BA的延长线于G.
∵EF∥CG,
∴∠G=∠AEF,∠ACG=∠AFE,
∵∠AEF=∠AFE,
∴∠G=∠ACG,
∴AG=AC,
∵BM=CM.EM∥CG,
∴BE=EG,
∴BE=BG=(BA+AG)=(AB+AC).
18. 分析:(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.
(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.
解:(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,
∴MN∥AD,MN=AD,
在RT△ABC中,∵M是AC中点,
∴BM=AC,
∵AC=AD,
∴MN=BM.
(2)解:∵∠BAD=60°,AC平分∠BAD,[来源:Z+xx+k.Com]
∴∠BAC=∠DAC=30°,
由(1)可知,BM=AC=AM=MC,
∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,
∵MN∥AD,
∴∠NMC=∠DAC=30°,
∴∠BMN=∠BMC+∠NMC=90°,
∴BN2=BM2+MN2,
由(1)可知MN=BM=AC=1,
∴BN=