- 113.00 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
知能提升作业(二十五)
第20章平行四边形的判定20.1平行四边形的判定
一、选择题(每小题4分,共12分)
1.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )
(A)88°,108°,88° (B)88°,104°,108°
(C)88°,92°,92° (D)88°,92°,88°
2.(2012·巴中中考)不能判定一个四边形是平行四边形的条件是( )
(A)两组对边分别平行
(B)一组对边平行,另一组对边相等
(C)一组对边平行且相等的
(D)两组对边分别相等
3.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么
还不能判定四边形ABCD为平行四边形,给出的以下四个说法中,正确的说法
有( )
(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;
(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;
(3)如果再加上条件“∠DAB=∠DCB”,那么四边形ABCD一定是平行四边形;
(4)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形.
(A)4个 (B)3个
(C)2个 (D)1个
二、填空题(每小题4分,共12分)
4.如图,在□ABCD中,E,G是AD的三等分点,F,H是BC的三等分点,则图中的平行四边形共有______个.
5.(2012·龙东中考)如图,在平行四边形ABCD中,点E,F分别在BC,AD上,请添加一个条件_______使四边形AECF是平行四边形(只填一个即可).
- 4 -
6.如图,DE∥BC,AE=EC,延长DE到F,使EF=DE,连结AF,FC,CD,则图中四边形ADCF是________.
三、解答题(共26分)
7.(8分)如图,在四边形PONM中,MO⊥ON于O,各边长在图中已标出,试说明四边形PONM是平行四边形.
8.(8分)(2012·湛江中考)如图,在平行四边形ABCD中,E,F分别在AD,BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
【拓展延伸】
9.(10分) 如图所示,已知D是等腰三角形ABC底边BC上的一点,点E,F分别在AC,AB上,且DE∥AB,DF∥AC. 求证:DE+DF=AB.
- 4 -
.
答案解析
1.【解析】选D.当四边形的三个内角度数依次为88°,92°,88°时,第四个角的度数为92°.由同旁内角互补,两直线平行,得四边形的两组对边分别平行,四边形为平行四边形.
2.【解析】选B.A,C,D选项都是正确的,B选项不一定是平行四边形.
3.【解析】选A.根据平行四边形的判定方法知,①②正确.对于③,∵AB∥CD,∴∠DAB+∠ADC=180°,∠DCB+∠ABC=180°,又∵∠DAB=∠DCB,
∴∠ADC=∠ABC,∴四边形ABCD为平行四边形,故③正确.对于④,
∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,又AO=CO,∴△ABO≌△CDO,
∴OB=OD,∴四边形ABCD为平行四边形,故④正确.
4.【解析】∵四边形ABCD为平行四边形
∴ADBC,又E,G和F,H分别为AD,BC的三等分点,∴AE=EG=GD=BF=FH=HC,故此题中的四边形全部为平行四边形,故平行四边形有□ABFE,□ABHG,□ABCD,
□EFHG,□EFCD和□GHCD共六个.
答案:6
5【解析】答案不唯一,如添加的条件是AF=CE.理由是:
∵四边形ABCD是平行四边形,
- 4 -
∴AD∥BC,∴AF∥CE,
∵AF=CE,∴四边形AECF是平行四边形.
答案:AF=CE(或E,F分别是BC,AD的中点或AE∥CF,答案不唯一)
6.【解析】∵AE=EC,EF=DE,∴四边形ADCF为平行四边形.
答案:平行四边形
7.【解析】在Rt△MON中,由勾股定理,得42+(x-5)2=(x-3)2,解得x=8,所以11-x=3,x-5=3,x-3=5,所以PM=ON,PO=MN,所以四边形PONM是平行四边形.
8.【证明】(1)∵四边形ABCD是平行四边形,
∴∠A=∠C,AB=CD,
在△ABE和△CDF中,
∵∴△ABE≌△CDF(S.A.S.).
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵AE=CF,∴AD-AE=BC-CF,
即DE=BF,∴四边形BFDE是平行四边形.
9.【证明】∵DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
∴DF=AE.
又∵DE∥AB,∴∠B=∠EDC,
又∵AB=AC,∴∠B=∠C,
∴∠C=∠EDC,∴DE=CE,
∴DF+DE=AE+CE=AC=AB.
- 4 -
相关文档
- 2020八年级数学下册 第18章 平行四2021-11-012页
- 八年级下数学课件八年级下册数学课2021-11-0113页
- 八年级数学下册知能提升作业二十六2021-11-015页
- 八年级下册数学教案 2-2-2 第2课时2021-11-012页
- 八年级下册数学同步练习2-2-2 第22021-11-012页
- 八年级下册数学教案18-1-2 第1课时2021-11-013页
- 八年级下册数学同步练习18-1-2 第22021-11-019页
- 初中数学8年级教案:第10讲 平行四边2021-11-018页
- 八年级数学下册第2章四边形2-2平行2021-11-0127页
- 2020八年级数学下册 第6章 平行四2021-11-014页