- 77.50 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
21.2.6根的判别式
学校:___________姓名:___________班级:___________
一.选择题(共15小题)
1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是( )
A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0
2.已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为( )
A.6 B.5 C.4 D.3
3.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
4.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是( )
A.方程有两个相等的实数根 B.方程有两个不相等的实数根
C.没有实数根 D.无法确定
5.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m< B.m≤ C.m> D.m≥
6.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
7.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )
A.1一定不是关于x的方程x2+bx+a=0的根
B.0一定不是关于x的方程x2+bx+a=0的根
C.1和﹣1都是关于x的方程x2+bx+a=0的根
D.1和﹣1不都是关于x的方程x2+bx+a=0的根
8.若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A.﹣1 B.1 C.﹣2或2 D.﹣3或1
9.关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是( )
A.有两不相等实数根 B.有两相等实数根
C.无实数根 D.不能确定
10
10.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<3 B.m>3 C.m≤3 D.m≥3
11.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为( )
A. B. C.2或3 D.
12.已知关于x的一元二次方程x2﹣2x+k﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k≤2 B.k≤0 C.k<2 D.k<0
13.下列一元二次方程中,有两个不相等实数根的是( )
A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
14.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是( )
A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4
15.下列一元二次方程中,没有实数根的是( )
A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2
二.填空题(共5小题)
16.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为 .
17.若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是 (只写一个).
18.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是 .
19.关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a= (一个即可).
20.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是 .
三.解答题(共3小题)
21.关于x的一元二次方程ax2+bx+1=0.
(1)当b=a+2时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.
10
22.已知关于x的方程x2+ax+a﹣2=0.
(1)若该方程的一个根为1,求a的值;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
23.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).
(1)求证:不论m为何值,该方程总有两个不相等的实数根;
(2)若该方程一个根为3,求m的值.
10
参考答案与试题解析
一.选择题(共15小题)
1.
解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
∴x1≠x2,结论A正确;
B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1+x2=a,
∵a的值不确定,
∴B结论不一定正确;
C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
∴x1•x2=﹣2,结论C错误;
D、∵x1•x2=﹣2,
∴x1、x2异号,结论D错误.
故选:A.
2.
解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根
∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,
∴m≤3.
∵m为正整数,且该方程的根都是整数,
∴m=2或3.
∴2+3=5.
故选:B.
3.
解:∵方程x2﹣2x+m=0有两个不相同的实数根,
∴△=(﹣2)2﹣4m>0,
解得:m<1.
故选:D.
10
4.
解:∵△=42﹣4×3×(﹣5)=76>0,
∴方程有两个不相等的实数根.
故选:B.
5.
解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<.
故选:A.
6.
解:∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根.
故选:A.
7.
解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,
∴,
∴b=a+1或b=﹣(a+1).
当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;
当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.
∵a+1≠0,
∴a+1≠﹣(a+1),
∴1和﹣1不都是关于x的方程x2+bx+a=0的根.
故选:D.
10
8.
解:原方程可变形为x2+(a+1)x=0.
∵该方程有两个相等的实数根,
∴△=(a+1)2﹣4×1×0=0,
解得:a=﹣1.
故选:A.
9.
解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,
∵(k+1)2≥0,
∴(k+1)2+8>0,即△>0,
所以方程有两个不相等的实数根.
故选:A.
10.
解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,
∴△=(﹣2)2﹣4m>0,
∴m<3,
故选:A.
11.
解:∵a=2,b=﹣k,c=3,
∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,
∵方程有两个相等的实数根,
∴△=0,
∴k2﹣24=0,
解得k=±2,
故选:A.
10
12.
解:根据题意得△=(﹣2)2﹣4(k﹣1)>0,
解得k<2.
故选:C.
13.
解:A、x2+6x+9=0
△=62﹣4×9=36﹣36=0,
方程有两个相等实数根;
B、x2=x
x2﹣x=0
△=(﹣1)2﹣4×1×0=1>0
两个不相等实数根;
C、x2+3=2x
x2﹣2x+3=0
△=(﹣2)2﹣4×1×3=﹣8<0,
方程无实根;
D、(x﹣1)2+1=0
(x﹣1)2=﹣1,
则方程无实根;
故选:B.
14.
解:根据题意得△=42﹣4k≥0,
解得k≤4.
故选:C.
15.
解:A、△=4﹣4=0,有两个相等的实数根,故此选项不合题意;
B、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意;
10
C、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;
D、△=25﹣4×3×2=25﹣24=1>0,有两个相等的实数根,故此选项不合题意;
故选:C.
二.填空题(共5小题)
16.
解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,
∴△=b2﹣4ac=0,
即:22﹣4(﹣m)=0,
解得:m=﹣1,
故选答案为﹣1.
17.
解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,
∴△=b2﹣4×2×3>0,
解得:b<﹣2或b>2.
故答案可以为:6.
18.
解:∵关于x的一元二次方程x2+4x﹣k=0有实数根,
∴△=42﹣4×1×(﹣k)=16+4k≥0,
解得:k≥﹣4.
故答案为:k≥﹣4.
19.
解:∵关于x的方程ax2+4x﹣2=0(a≠0)有实数根,
∴△=42+8a≥0,
解得a≥﹣2,
∴负整数a=﹣1或﹣2.
故答案为﹣2.
10
20.
解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,
∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,
解得m≤5.5,且m≠5,
则m的最大整数解是m=4.
故答案为:m=4.
三.解答题(共3小题)
21.
解:(1)a≠0,
△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,
∵a2>0,
∴△>0,
∴方程有两个不相等的实数根;
(2)∵方程有两个相等的实数根,
∴△=b2﹣4a=0,
若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.
22.
(1)解:将x=1代入原方程,得:1+a+a﹣2=0,
解得:a=.
(2)证明:△=a2﹣4(a﹣2)=(a﹣2)2+4.
∵(a﹣2)2≥0,
∴(a﹣2)2+4>0,即△>0,
∴不论a取何实数,该方程都有两个不相等的实数根.
23.
(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,
10
∵a=1,b=﹣(2m+2),c=m2+2m,
∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,
∴不论m为何值,该方程总有两个不相等的实数根.
(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,
解得:m1=3,m2=1.
∴m的值为3或1.
10
相关文档
- 初中物理单元复习课件中考物理复习2021-11-0675页
- 2019广西北部湾经济区初中学业水平2021-11-0620页
- 2020人教版初中化学九年级上学期知2021-11-0635页
- 初中化学真题汇编酸和碱的化学性质2021-11-066页
- 2020届初中物理章节复习 第12章 简2021-11-0626页
- 人教版初中三政治上册第二单元检测2021-11-067页
- 2012年黄埔区初中毕业班数学综合测2021-11-0611页
- 人教版初中三政治上册第三单元检测2021-11-067页
- 贵州省安顺市2020年初中毕业生学业2021-11-067页
- 初中物理中考复习课件:3利用浮力测2021-11-0614页