• 96.50 KB
  • 2021-11-06 发布

九年级数学上册第二十三章旋转23-3课题学习图案设计教案新版 人教版

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎23.3 课题学习 图案设计 利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.‎ 通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.‎ 重点 设计图案.‎ 难点 如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.‎ 一、复习引入 ‎(学生活动)请同学们独立完成下面的各题.‎ ‎1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.‎     ,第2题图)    ,第3题图)‎ ‎2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?‎ ‎3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?‎ 老师点评:‎ ‎1.AB与CD平行且相等;‎ ‎2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.‎ ‎3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.‎ 二、探索新知 请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.‎ 例1 (学生活动)学生亲自动手操作题.‎ 按下面的步骤,请每一位同学完成一个别致的图案.‎ ‎(1)准备一张正三角形纸片(课前准备)(如图a);‎ ‎(2)把纸片任意撕成两部分(如图b,如图c);‎ ‎(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;‎ ‎(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c保持不动);‎ ‎(5)把如图(d)平移到如图(c)的右边,得到如图(e);‎ ‎(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.‎ 2‎ 老师必要时可以给予一定的指导.‎ 三、课堂小结 本节课应掌握:‎ 利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.‎ 2‎