- 241.73 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年湖南省岳阳市中考数学试卷
一、选择题(本大题共8小题,每小题3分,满分24分.在每道小题给出的四个选项中,选出符合要求的一项)
1.(3分)﹣2019的绝对值是( )
A.2019 B.﹣2019 C.12019 D.-12019
2.(3分)下列运算结果正确的是( )
A.3x﹣2x=1 B.x3÷x2=x
C.x3•x2=x6 D.x2+y2=(x+y)2
3.(3分)下列立体图形中,俯视图不是圆的是( )
A. B. C. D.
4.(3分)如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是( )
A.20° B.25° C.30° D.50°
5.(3分)函数y=x+2x中,自变量x的取值范围是( )
A.x≠0 B.x>﹣2 C.x>0 D.x≥﹣2且x≠0
6.(3分)甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是S甲2=1.2,S乙2=1.1,S丙2=0.6,S丁2=0.9,则射击成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
7.(3分)下列命题是假命题的是( )
A.平行四边形既是轴对称图形,又是中心对称图形
B.同角(或等角)的余角相等
C.线段垂直平分线上的点到线段两端的距离相等
D.正方形的对角线相等,且互相垂直平分
8.(3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A.c<﹣3 B.c<﹣2 C.c<14 D.c<1
二、填空题(本大题共8小题,每小题4分,满分32分)
9.(4分)因式分解:ax﹣ay= .
10.(4分)2018年12月26日,岳阳三荷机场完成首航.至此,岳阳“水陆空铁”四位一体的交通格局全面形成.机场以2020年为目标年,计划旅客年吞吐量为600000人次.数据600000用科学记数法表示为 .
11.(4分)分别写有数字13、2、﹣1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是 .
12.(4分)若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .
13.(4分)分式方程1x=2x+1的解为x= .
14.(4分)已知x﹣3=2,则代数式(x﹣3)2﹣2(x﹣3)+1的值为 .
15.(4分)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布 尺.
16.(4分)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是 .(写出所有正确结论的序号)
①AM平分∠CAB;
②AM2=AC•AB;
③若AB=4,∠APE=30°,则BM的长为π3;
④若AC=3,BD=1,则有CM=DM=3.
三、解答题(本大题共8小题,满分64分解答应写出必要的文字说明、证明过程或演算步骤)
17.(6分)计算:(2-1)0﹣2sin30°+(13)﹣1+(﹣1)2019
18.(6分)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.
19.(8分)如图,双曲线y=mx经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.
(1)求m的值.
(2)求k的取值范围.
20.(8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.
(1)求复耕土地和改造土地面积各为多少亩?
(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的13,求休闲小广场总面积最多为多少亩?
21.(8分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
分数段
频数
频率
74.5~79.5
2
0.05
79.5~84.5
m
0.2
84.5~89.5
12
0.3
89.5~94.5
14
n
94.5~99.5
4
0.1
(1)表中m= ,n= ;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在 分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.
22.(8分)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)
(1)求小亮与塔底中心的距离BD;(用含a的式子表示)
(2)若小亮与小琴相距52米,求慈氏塔的高度AB.
23.(10分)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.
(1)如图1,求证:BE=BF;
(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;
(3)类比探究:若DE=a,CF=b.
①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;
②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)
24.(10分)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:y=13x2+73x的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)
(1)求点A、B的坐标;
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:y=ax2+bx+4经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;
(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.
2019年湖南省岳阳市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,满分24分.在每道小题给出的四个选项中,选出符合要求的一项)
1.(3分)﹣2019的绝对值是( )
A.2019 B.﹣2019 C.12019 D.-12019
【解答】解:﹣2019的绝对值是:2019.
故选:A.
2.(3分)下列运算结果正确的是( )
A.3x﹣2x=1 B.x3÷x2=x
C.x3•x2=x6 D.x2+y2=(x+y)2
【解答】解:A、3x﹣2x=x,故此选项错误;
B、x3÷x2=x,正确;
C、x3•x2=x5,故此选项错误;
D、x2+2xy+y2=(x+y)2,故此选项错误;
故选:B.
3.(3分)下列立体图形中,俯视图不是圆的是( )
A. B. C. D.
【解答】解:A、圆柱的俯视图是圆;故本项不符合题意;
B、圆锥的俯视图是圆;故本项不符合题意;
C、立方体的俯视图是正方形;故本项符合题意;
D、球的俯视图是圆;故本项不符合题意.
故选:C.
4.(3分)如图,已知BE平分∠ABC,且BE∥DC,若∠ABC=50°,则∠C的度数是( )
A.20° B.25° C.30° D.50°
【解答】解:∵BE平分∠ABC,∠ABC=50°,
∴∠ABE=∠EBC=25°,
∵BE∥DC,
∴∠EBC=∠C=25°.
故选:B.
5.(3分)函数y=x+2x中,自变量x的取值范围是( )
A.x≠0 B.x>﹣2 C.x>0 D.x≥﹣2且x≠0
【解答】解:根据题意得:x+2≥0x≠0,
解得:x≥﹣2且x≠0.
故选:D.
6.(3分)甲、乙、丙、丁四人各进行了10次射击测试,他们的平均成绩相同,方差分别是S甲2=1.2,S乙2=1.1,S丙2=0.6,S丁2=0.9,则射击成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
【解答】解:∵S甲2=1.2,S乙2=1.1,S丙2=0.6,S丁2=0.9,
∴S丙2<S丁2<S乙2<S甲2,
∴射击成绩最稳定的是丙,
故选:C.
7.(3分)下列命题是假命题的是( )
A.平行四边形既是轴对称图形,又是中心对称图形
B.同角(或等角)的余角相等
C.线段垂直平分线上的点到线段两端的距离相等
D.正方形的对角线相等,且互相垂直平分
【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;
B.同角(或等角)的余角相等;真命题;
C.线段垂直平分线上的点到线段两端的距离相等;真命题;
D.正方形的对角线相等,且互相垂直平分;真命题;
故选:A.
8.(3分)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A.c<﹣3 B.c<﹣2 C.c<14 D.c<1
【解答】解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个实数根,
且x1<1<x2,
整理,得:x2+x+c=0,
则1-4c>01+1+c<0.
解得c<﹣2,
故选:B.
二、填空题(本大题共8小题,每小题4分,满分32分)
9.(4分)因式分解:ax﹣ay= a(x﹣y) .
【解答】解:原式=a(x﹣y).
故答案是:a(x﹣y).
10.(4分)2018年12月26日,岳阳三荷机场完成首航.至此,岳阳“水陆空铁”四位一体的交通格局全面形成.机场以2020年为目标年,计划旅客年吞吐量为600000人次.数据600000用科学记数法表示为 6×105 .
【解答】解:将600000用科学记数法表示为:6×105.
故答案为:6×105.
11.(4分)分别写有数字13、2、﹣1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是 25 .
【解答】解:∵写有数字13、2、﹣1、0、π的五张大小和质地均相同的卡片,2、π是无理数,
∴从中任意抽取一张,抽到无理数的概率是:25.
故答案为:25.
12.(4分)若一个多边形的内角和等于它的外角和,则这个多边形的边数为 4 .
【解答】解:设多边形的边数为n,
则(n﹣2)×180°=360°,
解得:n=4,
故答案为:4.
13.(4分)分式方程1x=2x+1的解为x= 1 .
【解答】解:方程两边同乘x(x+1),
得x+1=2x,
解得x=1.
将x=1代入x(x+1)=2≠0.
所以x=1是原方程的解.
14.(4分)已知x﹣3=2,则代数式(x﹣3)2﹣2(x﹣3)+1的值为 1 .
【解答】解:∵x﹣3=2,
∴代数式(x﹣3)2﹣2(x﹣3)+1=(x﹣3﹣1)2
=(2﹣1)2
=1.
故答案为:1.
15.(4分)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布 531 尺.
【解答】解:设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据题意可得:
x+2x+4x+8x+16x=5,
解得:x=531,
即该女子第一天织布531尺.
故答案为:531.
16.(4分)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线
PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是 ①②④ .(写出所有正确结论的序号)
①AM平分∠CAB;
②AM2=AC•AB;
③若AB=4,∠APE=30°,则BM的长为π3;
④若AC=3,BD=1,则有CM=DM=3.
【解答】解:连接OM,
∵PE为⊙O的切线,
∴OM⊥PC,
∵AC⊥PC,
∴OM∥AC,
∴∠CAM=∠AMO,
∵OA=OM,
∠OAM=∠AMO,
∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;
∵AB为⊙O的直径,
∴∠AMB=90°,
∵∠CAM=∠MAB,∠ACM=∠AMB,
∴△ACM∽△AMB,
∴ACAM=AMAB,
∴AM2=AC•AB,故②正确;
∵∠APE=30°,
∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,
∵AB=4,
∴OB=2,
∴BM的长为60⋅π×2180=2π3,故③错误;
∵BD⊥PC,AC⊥PC,
∴BD∥AC,
∴PBPA=BDAC=13,
∴PB=13PA,
∴PB=12AB,BD=12OM,
∴PB=OB=OA,
∴在Rt△OMP中,OM=12OP=2,
∴∠OPM=30°,
∴PM=23,
∴CM=DM=DP=3,故④正确.
故答案为:①②④.
三、解答题(本大题共8小题,满分64分解答应写出必要的文字说明、证明过程或演算步骤)
17.(6分)计算:(2-1)0﹣2sin30°+(13)﹣1+(﹣1)2019
【解答】解:原式=1﹣2×12+3﹣1
=1﹣1+3﹣1
=2.
18.(6分)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.
【解答】证明:∵四边形ABCD是菱形,
∴AD=CD,
在△ADF和△CDE中,AD=CD∠D=∠DDF=DE,
∴△ADF≌△CDE(SAS),
∴∠1=∠2.
19.(8分)如图,双曲线y=mx经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.
(1)求m的值.
(2)求k的取值范围.
【解答】解:(1)∵双曲线y=mx经过点P(2,1),
∴m=2×1=2;
(2)∵双曲线y=2x与直线y=kx﹣4(k<0)有两个不同的交点,
∴2x=kx﹣4,整理为:kx2﹣4x﹣2=0,
∴△=(﹣4)2﹣4k•(﹣2)>0,
∴k>﹣2,
∴k的取值范围是﹣2<k<0.
20.(8分)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.
(1)求复耕土地和改造土地面积各为多少亩?
(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的13,求休闲小广场总面积最多为多少亩?
【解答】解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,
由题意,得x+(600+x)=1200
解得x=300.
则600+x=900.
答:改造土地面积是300亩,则复耕土地面积是900亩;
(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,
由题意,得y≤13(300﹣y).
解得 y≤75.
故休闲小广场总面积最多为75亩.
答:休闲小广场总面积最多为75亩.
21.(8分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.
分数段
频数
频率
74.5~79.5
2
0.05
79.5~84.5
m
0.2
84.5~89.5
12
0.3
89.5~94.5
14
n
94.5~99.5
4
0.1
(1)表中m= 8 ,n= 0.35 ;
(2)请在图中补全频数直方图;
(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在 89.5~94.5 分数段内;
(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.
【解答】解:(1)m=40×0.2=8,n=14÷40=0.35,
故答案为:8,0.35;
(2)补全图形如下:
(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在89.5~94.5,
∴测他的成绩落在分数段89.5~94.5内,
故答案为:89.5~94.5.
(4)选手有4人,2名是男生,2名是女生.
,
恰好是一名男生和一名女生的概率为812=23.
22.(8分)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)
(1)求小亮与塔底中心的距离BD;(用含a的式子表示)
(2)若小亮与小琴相距52米,求慈氏塔的高度AB.
【解答】解:(1)由题意得,四边形CDBG、HBFE为矩形,
∴GB=CD=1.7,HB=EF=1.5,
∴GH=0.2,
在Rt△AHE中,tan∠AEH=AHHE,
则AH=HE•tan∠AEH≈1.9a,
∴AG=AH﹣GH=1.9a﹣0.2,
在Rt△ACG中,∠ACG=45°,
∴CG=AG=1.9a﹣0.2,
∴BD=1.9a﹣0.2,
答:小亮与塔底中心的距离BD(1.9a﹣0.2)米;
(2)由题意得,1.9a﹣0.2+a=52,
解得,a=18,
则AG=1.9a﹣0.2=34,
∴AB=AG+GB=35.7,
答:慈氏塔的高度AB为35.7米.
23.(10分)操作体验:如图,在矩形ABCD中,点E、F分别在边AD、BC上,将矩形ABCD沿直线EF折叠,使点D恰好与点B重合,点C落在点C′处.点P为直线EF上一动点(不与E、F重合),过点P分别作直线BE、BF的垂线,垂足分别为点M和N,以PM、PN为邻边构造平行四边形PMQN.
(1)如图1,求证:BE=BF;
(2)特例感知:如图2,若DE=5,CF=2,当点P在线段EF上运动时,求平行四边形PMQN的周长;
(3)类比探究:若DE=a,CF=b.
①如图3,当点P在线段EF的延长线上运动时,试用含a、b的式子表示QM与QN之间的数量关系,并证明;
②如图4,当点P在线段FE的延长线上运动时,请直接用含a、b的式子表示QM与QN之间的数量关系.(不要求写证明过程)
【解答】(1)证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEF=∠EFB,
由翻折可知:∠DEF=∠BEF,
∴∠BEF=∠EFB,
∴BE=BF.
(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.
∵DE=EB=BF=5,CF=2,
∴AD=BC=7,AE=2,
在Rt△ABE中,∵∠A=90°,BE=5,AE=2,
∴AB=52-22=21,
∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,
∴12•BF•EH=12•BE•PM+12•BF•PN,
∵BE=BF,
∴PM+PN=EH=21,
∵四边形PMQN是平行四边形,
∴四边形PMQN的周长=2(PM+PN)=221.
(3)①证明:如图3中,连接BP,作EH⊥BC于H.
∵ED=EB=BF=a,CF=b,
∴AD=BC=a+b,
∴AE=AD﹣DE=b,
∴EH=AB=a2-b2,
∵S△EBP﹣S△BFP=S△EBF,
∴12BE•PM-12•BF•PN=12•BF•EH,
∵BE=BF,
∴PM﹣PN=EH=a2-b2,
∵四边形PMQN是平行四边形,
∴QN﹣QM=(PM﹣PN)=a2-b2.
②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM=a2-b2.
24.(10分)如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:y=13x2+73x的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)
(1)求点A、B的坐标;
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:y=ax2+bx+4经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;
(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.
【解答】解:(1)当x=﹣4时,y=13×(﹣4)2+73×(﹣4)=﹣4
∴点A坐标为(﹣4,﹣4)
当y=﹣2时,13x2+73x=﹣2
解得:x1=﹣1,x2=﹣6
∵点A在点B的左侧
∴点B坐标为(﹣1,﹣2)
(2)如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G
∴∠BEO=∠OGB'=90°,OE=1,BE=2
∵将△AOB绕点O逆时针旋转90°得到△A'OB'
∴OB=OB',∠BOB'=90°
∴∠BOE+∠B'OG=∠BOE+∠OBE=90°
∴∠B'OG=∠OBE
在△B'OG与△OBE中
∠OGB'=∠BEO∠B'OG=∠OBEB'O=OB
∴△B'OG≌△OBE(AAS)
∴OG=BE=2,B'G=OE=1
∵点B'在第四象限
∴B'(2,﹣1)
同理可求得:A'(4,﹣4)
∴OA=OA'=42+42=42
∵抛物线F2:y=ax2+bx+4经过点A'、B'
∴16a+4b+4=-44a+2b+4=-1 解得:a=14b=-3
∴抛物线F2解析式为:y=14x2﹣3x+4
∴对称轴为直线:x=--32×14=6
∵点M在直线x=6上,设M(6,m)
∴OM2=62+m2,A'M2=(6﹣4)2+(m+4)2=m2+8m+20
∵点A'在以OM为直径的圆上
∴∠OA'M=90°
∴OA'2+A'M2=OM2
∴(42)2+m2+8m+20=36+m2
解得:m=﹣2
∴A'M=m2+8m+20=4-16+20=22
∴S△OA'M=12OA'•A'M=12×42×22=8
(3)在坐标轴上存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.
∵B'(2,﹣1)
∴直线OB'解析式为y=-12x
y=-12xy=14x2-3x+4 解得:x1=2y1=-1(即为点B')x2=8y2=-4
∴C(8,﹣4)
∵A'(4,﹣4)
∴A'C∥x轴,A'C=4
∴∠OA'C=135°
∴∠A'OC<45°,∠A'CO<45°
∵A(﹣4,﹣4),即直线OA与x轴夹角为45°
∴当点D在x轴负半轴或y轴负半轴时,∠AOD=45°,此时△AOD不可能与△OA'C相似
∴点D在x轴正半轴或y轴正半轴时,∠AOD=∠OA'C=135°(如图2、图3)
①若△AOD∽△OA'C,则ODA'C=OAOA'=1
∴OD=A'C=4
∴D(4,0)或(0,4)
②若△DOA∽△OA'C,则DOOA'=OAA'C=424=2
∴OD=2OA'=8
∴D(8,0)或(0,8)
综上所述,点D坐标为(4,0)、(8,0)、(0,4)或(0,8)时,以A、O、D为顶点的三角形与△OA'C相似.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 10:03:07;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年山东省枣庄市中考数学试卷含2021-11-0628页
- 2018年浙江省衢州市中考数学试卷含2021-11-0618页
- 台湾省中考数学试卷含答案解析2021-11-0630页
- 2018年甘肃省定西市中考数学试卷含2021-11-0621页
- 2019年江苏省苏州市中考数学试卷含2021-11-0630页
- 2018年江苏省泰州市中考数学试卷含2021-11-068页
- 2019年江苏省扬州市中考数学试卷含2021-11-0613页
- 2018年湖北省宜昌市中考数学试卷含2021-11-0619页
- 新疆乌鲁木齐市中考数学试卷含答案2021-11-0629页
- 2019年四川省达州市中考数学试卷含2021-11-0632页