- 1017.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
{来源}2019年德州中考数学
{适用范围:3. 九年级}
{标题}2019年烟台市初中学生学业考试数学试题
{题型:1-选择题}一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.
{题目}1. (2009年烟台T1)-8的立方根是
A.2 B.-2 C.±2 D.-2
{答案}B
{解析}本题考查了立方根的定义,∵-2的立方等于-8,∴-8的立方根是-2.
因此本题选B.
{分值}3
{章节:[1-6-2]立方根}
{考点:立方根}
{类别:常考题}
{难度:1-最简单}
{题目}2. (2009年烟台T2)下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是
A. B. C. D.
{答案} C
{解析}本题考查了中心对称与轴对称图形,A是中心对称图形,B是轴对称图形,C既是轴对称图形又是中心对称图形,D是轴对称图形,综上选C.
{分值}3
{章节:[1-23-2-2]中心对称图形}
{考点:中心对称图形}
{类别:常考题}
{难度:1-最简单}
{题目}3. (2009年烟台T3)如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是
A.主视图和左视图 B.主视图和俯视图
C.左视图和俯视图 D.主视图、左视图、俯视图
{答案}A
{解析}本题考查了三视图的判断,三视图没有发生变化的是主视图和左视图,发生变化的是俯视图,故选A..
{分值}3
{章节:[1-29-2]三视图}
{考点:简单组合体的三视图}
{类别:常考题}
{难度:2-简单}
{题目}4.(2009年烟台T4)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为
A. B. C. D.无法确定
{答案}B
{解析}本题考查了概率的计算,正六边形的性质,由正六边形的性质知,白色区域的面积是整个正六边形面积的1/2,∴飞镖落在白色区域的概率为1/2. 因此本题选B.
{分值}3
{章节:[1-25-1-2]概率}
{考点:几何概率}
{类别:常考题}
{难度:2-简单}
{题目}5. (2009年烟台T5)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为
A.1.5×10-9秒 B.15×10-9秒 C.1.5×10-8秒 D.15×10-8秒
{答案}C
{解析}本题考查了科学记数法,15×0.000 000 001=1.5×,因此本题选C.
{分值}3
{章节:[1-15-2-3]整数指数幂}
{考点:将一个绝对值较小的数科学计数法}
{类别:常考题}
{难度:2-简单}
{题目}6. (2009年烟台T6)当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
{答案}A
{解析}本题考查了根的判别式,Δ=b2+12c=b2+12×(5-b)=b2+60-12b
=b2-12b+36+24=(b-6)2+24>0. ∴方程有两个不相等的实数根,因此本题选A.
{分值}3
{章节:[1-21-2-2]公式法}
{考点:根的判别式}
{类别:常考题}
{难度:3-中等难度}
{题目}7.(2009年烟台T7)某班有40人,一次体能测试后,老师对测试成绩进行了统计,由于小亮没有参加本次集体测试,因此计算其他39人的平均成绩为90分,方差为s2=41. 后来小亮进行了补测,成绩为90分.关于该班40人的测试成绩,下列说法中确的是
A.平均分不变,方差变大 B.平均分不变,方差变小
C.平均分和方差都不变 D.平均分和方差都改变
{答案}B
{解析}本题考查了统计量的意义与计算,由平均数和方差的计算公式知平均分不变,方差变小. 因此本题选B.
{分值}3
{章节:[1-20-2-1]方差}
{考点:方差}
{类别:常考题}
{难度:2-简单}
{题目}8.(2009年烟台T8)已知∠AOB=60°,以O为圆心,以任意长为半径作弧,交OA、OB于点M、N,分别以点M、N为圆心,以大于MN的长度为半径作弧,两弧在∠AOB内交于点P,以OP为边作∠POC=15°,则∠BOC的度数为
A.15° B.45° C.15°或30° D.15°或45°
{答案}D
{解析}本题考查了尺规作图,由作图纸OP为∠AOB的角平分线,又OC可能在OP的两侧,由此可判断选D.
{分值}3
{章节:[1-12-3]角的平分线的性质}
{考点:与角平分线有关的作图问题}
{类别:尺规作图}
{难度:2-简单}
{题目}9.(2009年烟台T9)南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.
(a+b)0=1
(a+b)1=a+b
(a+b)2=a2+2ab+b2
(a+b)3=a3+2a2b+2ab2+b3
(a+b)4=a4+4a3b+6a2b2+4ab3+b4
(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5
……
则(a+b)9展开式中所有项的系数和是
A.128 B.256 C.512 D.1024
{答案}C
{解析}本题考查了阅读理解能力,取a=1,b=1,则可以计算展开式中所有项的系数和是=512.,因此本题选C.
{分值}3
{章节:[1-14-2]乘法公式}
{考点:完全平方公式}
{类别:思想方法}{类别:数学文化}
{难度:3-中等难度}
{题目}10. (2009年烟台T10)如图,面积为24的□ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6. 则sin∠DCE的值为
A. B. C. D.
A
B
C
E
D
F
{答案}A
{解析}本题考查了菱形的性质,锐角三角函数,.
如图,连接AC交BD于点O,过点D作DF⊥BE于点F.
A
B
C
E
D
F
O
∵BD平分∠ABC,∴∠ABD=∠CBD.
∵四边形ABCD是平行四边形,∴BC∥AD. ∴∠ADB=∠CBD.
∴∠ABD=∠ADB. ∴AB=AD. ∴□ABCD是菱形.
∴AO垂直平分BD.
∵DE⊥BD,∴OC∥DE.
∴OC=DE=×6=3.
∵菱形ABCD的面积为24,∴BD=8. ∴BO=4. ∴BC=DC=5.
∵DF·BC=24,∴DF=. ∴sin∠DCE==. 故选A.
{分值}3
{章节:[1-28-3]锐角三角函数}
{考点:正弦}
{类别:思想方法}{类别:常考题}
{难度:3-中等难度}
{题目}11.(2009年烟台T11)已如二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x
-1
0
2
3
4
y
5
0
-4
-3
0
下则结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2)、B(x2,3)是抛物线上两点,则x1<x2.其中正确的个数是
A.2 B.3 C.4 D.5
{答案}B
{解析}本题考查了二次函数的图象与性质.
由题意,画草图如图所示.
由草图可以判断①②④正确,③错误,对于⑤,当A位于抛物线对称轴的右侧,B位于左侧时,x1>x2,由此可判断⑤错误. 故选B.
{分值}3
{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}
{考点:二次函数y=ax2+bx+c的性质}
{类别:思想方法} {类别:常考题}
{难度:3-中等难度}
{题目}12.(2009年烟台T12)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC. 若AD=,CE=3,则的长为
A. B.π C.π D.π
O
A
D
C
E
B
{答案}D
{解析}本题考查了,切线的性质,相似的性质.
如图,连接OC,过点A作AF⊥BE于F.
O
A
D
C
E
B
F
∵直线DE与⊙O相切,∴OC⊥DE.
∵AD⊥DE,BE⊥DE,∴AD∥OC∥BE.
∵∵AB是直径,∴∠ACB=90°. ∴∠ACD+∠BCE=90°.
∵∠D=∠E=90°,∴∠DAC+∠ACD=90°.
∴∠DAC=∠BCE. ∴,△ADC∽△CEB.
∴,即. ①
∵,即. ②
又AD+BE=2OC=2r. ③
由①②③得DC=3,BE=,r=2.
由勾股定理,得AC= r=2.∴∠AOC=60°.
∴==π. 故选D.
{分值}3
{章节:[1-24-2-2]直线和圆的位置关系}
{考点:切线的性质}
{考点:圆与相似的综合}
{考点:几何选择压轴}
{类别:思想方法}{类别:常考题}
{难度:4-较高难度}
{题型:2-填空题}二、填空题(本大题共6个小题,每小题3分,满分18分)
{题目}13. (2009年烟台T13)│-6│×2-1-cos45°=____________
{答案}2
{解析}本题考查了实数的计算,
│-6│×2-1-cos45°=6×﹣=3﹣1=2. 故填2.
{分值}3
{章节:[1-28-2-1]特殊角}
{考点:简单的实数运算}
{考点:特殊角的三角函数值}
{类别:常考题}
{难度:2-简单}
{题目}14. (2009年烟台T14)若关于x的分式方程-1=有增根,则m的值为____________
{答案}3
{解析}本题考查了分式方程的增根的有关计算.
-1=,
去分母,得3x﹣(x﹣2)=m+3,∴m=2x﹣1.
∵原分式方程有增根,∴x﹣2=0,∴x=2.
∴m=2x﹣1=2×2﹣1=3. 故填3.
{分值}3
{章节:[1-15-3]分式方程}
{考点: 分式方程的增根}
{类别:常考题}
{难度:2-简单}
{题目}15. (2009年烟台T15)如图,在直角坐标系中,每个小正方形的边长均为1个单位长度,△ABO的顶点坐标分别为A(-2,-1),B(-2,-3),O(0,0).△A1B1O1的顶点全标分别为A1(1,一1),B1(1,-5),O1(5,1).△ABO与△A1B1O1是以点P为位似中心的位似图形,则P点的坐标为____________
{答案}(﹣5,﹣1)
{解析}本题考查了平面直角坐标系中的位似变换.
法一:借助网格.任意两对应点连线的交点为(﹣5,﹣1).
法二:设点P坐标为(x,y).
∵直线AA1平行于x轴,∴y= ﹣1.
又∵AB平行于A1B1,∴PA:PA1=AB:A1B1=2:4=1:2.
∴PA=3. ∴x= ﹣3﹣2= ﹣5. 即P点坐标为(﹣5,﹣1). 故填(﹣5,﹣1).
{章节:[1-27-2-1]位似}
{考点:坐标系中的位似}
{类别:常考题}
{难度:2-简单}
{题目}16. (2009年烟台T16)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为____________
{答案} x1
{解析}本题考查了一次函数与方程、不等式的关系.
把点P(m,3)代入y=x+2,得3=m+2,∴m=1.
∴点P坐标为(1,3).
由图象可知,当x<1时,y=ax+c的图象在y=x+2的上方,∴x+2≤ax+c的解为x1.
{分值}3
{章节:[1-19-3]一次函数与方程、不等式}
{考点:一次函数与一元一次不等式}
{类别:思想方法}{类别:常考题}
{难度:2-简单}
{题目}17. (2009年烟台T17)小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是____________
{答案}45º
{解析}本题考查了轴对称的性质,折叠.
由折叠可知,AOB=2×=45º.
{分值}3
{章节:[1-13-1-1]轴对称}
{考点:轴对称的性质}
{类别:常考题}
{难度:2-简单}
{题目}18. (2009年烟台T18)如图,分别以边长为2的等边三角形ABC的三个顶点为圆心,以边长为半径作狐,三段弧所围成的图形是一个曲边三角形,已如⊙O是△ABC的内切圆,则阴影部分面积为__________
{答案}﹣2
{解析}本题考查了与扇形有关的阴影部分面积的计算.
令⊙O得半径为r,过点O作ODAB于D,连接OB,
则OB=2r,BD=r=AB=1,∴r=.
由题意,可知扇形ABC的面积=,△ABC的面积==.
⊙O面积=r2=.
∴阴影部分面积=3×扇形ABC的面积﹣2×△ABC的面积﹣⊙O面积
=3×﹣2﹣=﹣2.
D
{分值}3
{章节:[1-24-4]弧长和扇形面积}
{考点:扇形的面积}
{类别:思想方法}{类别:常考题}
{难度:3-中等难度}
{题型:4-解答题}三、解答题(本大题共7个小题,满分66分)
{题目}19.(2009年烟台T19)先化简:(x+3-)÷,再从0≤x≤4选一个适合的整数代入求值.
{解析}本题考查了分式的化简求值. 先化简分式,再代值计算,代值时注意不能取使分母为0的值.
{答案}解:x+3-)÷
=
==.
由于x≠0,3,4,所以x只能取1或2.
当x=1时,原式=.
当x=2时,原式=.
{分值}6
{章节:[1-15-2-2]分式的加减}
{考点:分式的混合运算}
{类别:常考题}
{难度:2-简单}
{题目}20.(本题满分8分T20)
(2009年烟台)十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”,“歌曲联唱”、“民族舞蹈”等节目,小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.
(1)五届艺术节共有_______个班级表演这些节目,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为___________
(2)补全折线统计图;
(3)第六届艺术节,某班决定从这四种艺术形式中任选两项表演(“经典诵读”、“民乐演奏”,“歌曲联唱”、“民族舞蹈”分别用A,B,C,D表示),利用树状图或表格求出该班选择A和D两项的概率.
{解析}本题考查了统计与概率的综合应用.
(1)由图象,前三届的总班级数,对应的总百分比数可求,从而可求五届艺术节共有
的班级数. 分别求出五届班级数,即可据中位数的意义求得中位数. 利用第四届班级数的百分比可求其扇形圆心角的度数.
(2)据第四届,第五届班级数可补全折线统计图.
(3)这相当于不放回的两步试验概型,通过列表格或画树状图即可求解.
{答案}解:(1)40,7,81°.
(提示:第五届所占的百分比为=32.5%,总人数为:=40.
五届人数分别为:5,7,6,9,13,因此中位数为7.
第四届班级数的扇形圆心角的度数为22.5%×360°=81°.
(2)第四届,第五届人数分别是9,13,补全折线统计图略.
(3)列表格如下:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
由表格知,共有12种结果,其中选择A和D两项的有2种结果,
因此该班选择A和D两项的概率==.
{分值}8
{章节:[1-25-2]用列举法求概率}
{考点:统计的应用问题}
{考点:中位数}
{考点:两步事件不放回}
{类别:常考题}
{难度:2-简单}
{题目}21.(2009年烟台T21)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
{解析}本题考查了一元一次方程及二元一次方程(组)的应用问题.
(1)本题中的等量关系为:36×36座新能源客车辆数+2=学生总数,22×(36座新能源客车辆数+4)-2=学生总数,据此可列方程(组)求出第一小题的解;(2)设租用36座新能源客车m辆,22座新能源客车n辆,依题意得36m+22n=218,再讨论出符合条件的整数解即可得到答案.
{答案}解:(1)设计划调配36座新能源客车x辆,根据题意,得
36x+2=22 (x+4)-2,
解得 x=6.
此时36x+2=218.
答:计划调配36座新能源客车6辆,该大学共有218名志愿者.
(2)设租用36座新能源客车m辆,22座新能源客车n辆,依题意得
36m+22n=218,即18m+11n=109,
其正整数解为m=3, n=5.
故租用36座新能源客车3辆,22座新能源客车5辆,既保证每人有座,又保证每车不空座.
{分值}9
{章节:[1-8-3]实际问题与一元一次方程组}
{考点:一元一次方程的应用(其他问题)}
{考点:二元一次方程的解}
{考点:二元一次方程组的应用}
{类别:常考题}
{难度:3-中等难度}
{题目}22.(2009年烟台T22)如图,在矩形ABCD中,CD=2,AD=4,点P在BC上,将△ABP沿AP折叠,点B恰好落在对角线AC上的E点.O为AC上一点,⊙O经过点A,P.
(1)求证:BC是⊙O的切线;
(2)在边CB上截取CF=CE,点F是线段BC的黄金分割点吗?请说明理由.
{解析}本题考查了翻折变换、矩形的性质、切线的判定、勾股定理及黄金分割.
(1)BC过⊙O上一点P,若证BC是⊙O的切线,连接OP,只要证明BC与OP垂直即可;(2)若说明点F是否是线段BC的黄金分割点,只需求出CF2与BF•BC,看它们是否相等即可.
{答案}解:(1)证明:如图,连接OP,则OA=OP,∴∠OAP=∠OPA.
由折叠知∠BAP=∠OAP,∴∠OPA=∠BAP. ∴AB∥OP.
又∵AB⊥BC,∴OP⊥BC.
∴BC是⊙O的切线.
(2)点F是线段BC的黄金分割点,理由如下:
在矩形ABCD中,∵AB=CD=2,BC=AD=4,
∴AC=.
又∵AE=AB=2,∴CE=CF=-2.
∴BF=BC-CF=6-.
∵CF2=(-2)2=24-,
BF•BC=4(6-)=24-,
∴CF2=BF•BC.
∴点F是线段BC的黄金分割点.
{分值}9
{章节:[1-24-2-2]直线和圆的位置关系}
{考点:切线的判定}
{考点:圆的其它综合题}
{类别:常考题}
{难度:3-中等难度}
{题目}23.(2009年烟台T23)如图所示,一种适用于笔记本电脑的铝合金支架,边OA,OB可绕点O开合,在OB边上有一固定点P,支柱PQ可绕点P转动,边OA上有六个卡孔,其中离点O最近的卡孔为M,离点O最远的卡孔为N.当支柱端点Q放入不同卡孔内,支架的倾斜角发生变化.将电脑放在支架上,电脑台面的角度可达到六档调节,这样更有利于工作和身体健康.现测得OP的长为12 cm,OM为10 cm,支柱PQ为8 cm.
(1)当支柱的端点Q放在卡孔M处时,求∠AOB的度数;
(2)当支柱的端点Q放在卡孔N处时,∠AOB=20.5°,若相邻两个卡孔的距离相同,求此间距.(结果精确到十分位)
(参考数据表)
计算器按键顺序
计算结果(已取近似值)
2.65
6.8
11.24
0.35
0.937
41
49
49
41
{解析}本题考查解直角三角形及其应用.
(1)过点P作PC⊥OA于点C,设OC=x,然后根据勾股定理求出x的值,再根据三角函数即可求出∠AOB的度数;(2)若求相邻两个卡孔的距离,只要求出MN的长即可,故求ON的长是解此题的关键.
{答案}解:解:(1)如图,过P作PC⊥OM于C,设OC=x,则CM=10- x,
由勾股定理,得122- x2=82-(10- x)2,
解得x=9.
在Rt△POC中,cos∠POC=
∴∠POC≈41°,
即∠AOB的度数约为41°.
(2)如图,过P作PD⊥ON于D,则sin∠PON=,
即sin20.5°=,
∴PD≈12×0.35=4.2.
在Rt△PDN中,ND=.
在Rt△POD中,OD=OP·cosO = OP·cos20.5°≈12×0.937
≈11.24.
∴ON=OD+ND≈6.8+11.24=18.04,
∴相邻两个卡孔的距离为:(ON-OM)÷5=(18.04-10)÷5≈1.6(cm).
{分值}10
{章节:[1-28-2-3]解直角三角形及其应用}
{考点:计算器-三角函数}
{考点:解直角三角形的应用—测高测距离}
{类别:常考题}
{难度:3-中等难度}
{题目}24.(本题满分11分T24)(2009年烟台)【问题探究】
(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.
①请探究AD与BD之间的位置关系:________;
②若AC=BC=,DC=CE=,则线段AD的长为________;
【拓展延伸】
(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.
{解析}本题考查了等腰直角三角形、全等三角形的判定及性质及相似三角形的判定及性质.
(1)①由题意,可得△ACD≌△BCE,所以∠ADC=45°,从而∠ADE=90°,即AD⊥BE;②将相关量集中到Rt△ADB中,设未知数利用勾股定理列方程可求解.
(2)类比(1)即可解决. 注意当点B,D,E在同一直线上时,有两种情形,要分情况求解.
{答案}解:解:(1)①垂直 ②4.
提示:由题意,可得△ACD≌△BCE,,所以∠ADC=45°,从而∠ADE=90°,即AD⊥BE.
②由AC=BC=,DC=CE=,得AB=,DE=2.
在Rt△ADB中,设AD=x,则由勾股定理得.
解得x=4. (负值舍去). ∴AD=4.
(2)①如图:
A
C
E
D
B
∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1,
∴AB=2,DE=2,∠ACD=∠BCE, .
∴△ACD∽△BCE.
∴∠ADC=∠E,.
又∵∠CDE+∠E=90°,∴∠ADC+∠CDE =90°,即∠ADE=90°.
∴AD⊥BE.
设BE=x,则AD=x.
在Rt△ABD中,,即.
解得x=3(负值舍去).
∴AD=.
②如图,
A
C
B
E
D
同①设BE=x,则AD=x.
在Rt△ABD中,,即.
解得x=2(负值舍去).
∴AD=.
综上可得,线段AD的长为
{分值}11
{章节:[1-27-1-1]相似三角形的判定}
{考点:几何综合}
{类别:思想方法}{类别:常考题}
{难度:4-较高难度}
{题目}25.(2009年烟台T25)如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(-1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E.双曲线y=(x>0)经过点D,连接MD,BD.
(1)求抛物线的表达式;
(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;
(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)
{解析}本题考查了二次函数与几何图形的综合应用.
(1)由题意知 D点的纵坐标为3,将其代入反比例函数解析式可求得D点坐标,从而可利用待定系数法求抛物线的表达式.
(2)设M关于y轴的对称点为M′,D点关于x轴对称点为D′,则线段M′D′的长即为以M,D,N,F为顶点的四边形的周长最小值,从而此题可解.
(3)过B、D两点的圆,当圆与y轴相切时,切点即为点P.
{答案}解:(1)由题意知C的坐标为(0,3),则D点的纵坐标为3.
把y=3代入y=,得x=2. ∴D 的坐标为(2,3).
把A(-1,0),D(2,3)的坐标代入y=ax2+bx+3,得
解得
∴抛物线的表达式为y=-x2+2x+3.
(2)y=-x2+2x+3=.∴顶点M的坐标为(1,4).
设M关于y轴的对称点为M′,则M′的坐标为(-1,4).
同理D点关于x轴对称点的坐标D′的坐标为(2,-3).
设直线M′D′为y=kx+b,则 解得
∴直线M′D′的表达式为y=x+.
直线M′D′交x轴于点(,0),交y轴于点(0,).
∴当以M,D,N,F为顶点的四边形周长最小时,点N的坐标为((,0),F的坐标(0,).
(3)(3)t=.
(解析:过B、D两点的圆,当圆与y轴相切时,切点即为点P.
设圆心的坐标为(a,b),则由勾股定理定理,得
解得(由题意,取较小值).
所以当t=时,∠BPD的度数最大.
{分值}13
{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}
{考点:二次函数与圆的综合}
{考点:其他二次函数综合题}
{考点:代数综合}
{类别:思想方法}
{类别:高度原创}
{难度:5-高难度}
相关文档
- 2020年四川省内江市中考数学试题2021-11-0631页
- 2013年湖北省黄冈市中考数学试题(含2021-11-069页
- 甘肃省白银市中考数学试题(含答案)2021-11-0625页
- 2014年湖北省江汉油田、潜江市、天2021-11-0624页
- 2009年广东省湛江市中考数学试题(含2021-11-0612页
- 2013年山东省济宁市中考数学试题(2021-11-0613页
- 2013年贵州省六盘水市中考数学试题2021-11-0618页
- 山东省菏泽市2017年中考数学试题2021-11-066页
- 2013四川南充中考数学试题 及答案 2021-11-0610页
- 2012中考数学试题及答案分类汇编:数2021-11-064页