- 394.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年陕西省中考数学试卷
一、选择题(共10小题,每小题3分,满分30分)
1.计算:(﹣)×2=( )
A.﹣1 B.1 C.4 D.﹣4
【考点】有理数的乘法.
【分析】原式利用乘法法则计算即可得到结果.
【解答】解:原式=﹣1,
故选A
2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )
A. B. C. D.
【考点】简单组合体的三视图.
【分析】根据已知几何体,确定出左视图即可.
【解答】解:根据题意得到几何体的左视图为,
故选C
3.下列计算正确的是( )
A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2
【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.
【分析】A、原式合并得到结果,即可作出判断;
B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;
C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;
D、原式利用积的乘方运算法则计算得到结果,即可作出判断.
【解答】解:A、原式=4x2,错误;
B、原式=2x5y,错误;
C、原式=2xy2,错误;
D、原式=9x2,正确,
故选D
4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=( )
A.65° B.115° C.125° D.130°
【考点】平行线的性质.
【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.
【解答】解:∵AB∥CD,
∴∠C+∠CAB=180°,
∵∠C=50°,
∴∠CAB=180°﹣50°=130°,
∵AE平分∠CAB,
∴∠EAB=65°,
∵AB∥CD,
∴∠EAB+∠AED=180°,
∴∠AED=180°﹣65°=115°,
故选B.
5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是( )
A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0
【考点】一次函数图象上点的坐标特征.
【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.
【解答】解:把点A(a,b)代入正比例函数y=﹣x,
可得:﹣3a=2b,
可得:3a+2b=0,
故选D
6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.
【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,
∴AC===10,
∵DE是△ABC的中位线,
∴DF∥BM,DE=BC=3,
∴∠EFC=∠FCM,
∵∠FCE=∠FCM,
∴∠EFC=∠ECF,
∴EC=EF=AC=5,
∴DF=DE+EF=3+5=8.
故选B.
7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】两条直线相交或平行问题.
【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.
【解答】解:∵一次函数y=kx+5中k>0,
∴一次函数y=kx+5的图象经过第一、二、三象限.
又∵一次函数y=k′x+7中k′<0,
∴一次函数y=k′x+7的图象经过第一、二、四象限.
∵5<7,
∴这两个一次函数的图象的交点在第一象限,
故选A.
8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有( )
A.2对 B.3对 C.4对 D.5对
【考点】正方形的性质;全等三角形的判定.
【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.
【解答】解:∵四边形ABCD是正方形,
∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,
在△ABD和△BCD中,
,
∴△ABD≌△BCD,
∵AD∥BC,
∴∠MDO=∠M′BO,
在△MOD和△M′OB中,
,
∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,
∴全等三角形一共有4对.
故选C.
9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为( )
A.3B.4C.5D.6
【考点】垂径定理;圆周角定理;解直角三角形.
【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.
【解答】解:过点O作OD⊥BC于D,
则BC=2BD,
∵△ABC内接于⊙O,∠BAC与∠BOC互补,
∴∠BOC=2∠A,∠BOC+∠A=180°,
∴∠BOC=120°,
∵OB=OC,
∴∠OBC=∠OCB==30°,
∵⊙O的半径为4,
∴BD=OB•cos∠OBC=4×=2,
∴BC=4.
故选:B.
10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为( )
A. B. C. D.2
【考点】抛物线与x轴的交点;锐角三角函数的定义.
【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.
【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点C(﹣1,4),
如图所示,作CD⊥AB于D.
在RT△ACD中,tan∠CAD===2,
故答案为D.
二、填空题(共4小题,每小题3分,满分12分)
11.不等式﹣x+3<0的解集是 x>6 .
【考点】解一元一次不等式.
【分析】移项、系数化成1即可求解.
【解答】解:移项,得﹣x<﹣3,
系数化为1得x>6.
故答案是:x>6.
12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.一个多边形的一个外角为45°,则这个正多边形的边数是 8 .
B.运用科学计算器计算:3sin73°52′≈ 11.9 .(结果精确到0.1)
【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.
【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.
【解答】解:(1)∵正多边形的外角和为360°
∴这个正多边形的边数为:360°÷45°=8
(2)3sin73°52′≈12.369×0.961≈11.9
故答案为:8,11.9
13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为 y= .
【考点】反比例函数与一次函数的交点问题.
【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.
【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,
∴A(﹣2,0),B(0,4),
过C作CD⊥x轴于D,
∴OB∥CD,
∴△ABO∽△ACD,
∴==,
∴CD=6,AD=3,
∴OD=1,
∴C(1,6),
设反比例函数的解析式为y=,
∴k=6,
∴反比例函数的解析式为y=.
故答案为:y=.
14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为 2﹣2 .
【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.
【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,求出BD即可解决问题.
【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.
此时△PBC是等腰三角形,线段PD最短,
∵四边形ABCD是菱形,∠ABC=60°,
∴AB=BC=CD=AD,∠ABC=∠ADC=60°,
∴△ABC,△ADC是等边三角形,
∴BO=DO=×2=,
∴BD=2BO=2,
∴PD最小值=BD﹣BP=2﹣2.
故答案为2﹣2.
三、解答题(共11小题,满分78分)
15.计算:﹣|1﹣|+(7+π)0.
【考点】实数的运算;零指数幂.
【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.
【解答】解:原式=2﹣(﹣1)+1
=2﹣+2
=+2.
16.化简:(x﹣5+)÷.
【考点】分式的混合运算.
【分析】根据分式的除法,可得答案.
【解答】解:原式=•
=(x﹣1)(x﹣3)
=x2﹣4x+3.
17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)
【考点】作图—相似变换.
【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.
【解答】解:如图,AD为所作.
18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是 比较喜欢 ;
(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
【考点】众数;用样本估计总体;扇形统计图;条形统计图.
【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;
(2)根据(1)中补全的条形统计图可以得到众数;
(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.
【解答】解:(1)由题意可得,
调查的学生有:30÷25%=120(人),
选B的学生有:120﹣18﹣30﹣6=66(人),
B所占的百分比是:66÷120×100%=55%,
D所占的百分比是:6÷120×100%=5%,
故补全的条形统计图与扇形统计图如右图所示,
(2)由(1)中补全的条形统计图可知,
所抽取学生对数学学习喜欢程度的众数是:比较喜欢,
故答案为:比较喜欢;
(3)由(1)中补全的扇形统计图可得,
该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),
即该年级学生中对数学学习“不太喜欢”的有240人.
19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.
求证:AF∥CE.
【考点】平行四边形的性质;全等三角形的判定与性质.
【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.
【解答】证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠1=∠2,
∵BF=DE,
∴BF+BD=DE+BD,
即DF=BE,
在△ADF和△CBE中,
,
∴△ADF≌△CBE(SAS),
∴∠AFD=∠CEB,
∴AF∥CE.
20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.
如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.
【考点】相似三角形的应用.
【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.
【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,
∠ACB=∠ECD,∠AFB=∠GHF,
故△ABC∽△EDC,△ABF∽△GFH,
则=, =,
即=, =,
解得:AB=99,
答:“望月阁”的高AB的长度为99m.
21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.
根据下面图象,回答下列问题:
(1)求线段AB所表示的函数关系式;
(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?
【考点】一次函数的应用.
【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;
(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.
【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,
依题意有,
解得.
故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);
(2)12+3﹣(7+6.6)
=15﹣13.6
=1.4(小时),
112÷1.4=80(千米/时),
÷80
=80÷80
=1(小时),
3+1=4(时).
答:他下午4时到家.
22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.
根据以上规则,回答下列问题:
(1)求一次“有效随机转动”可获得“乐”字的概率;
(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.
【考点】列表法与树状图法;概率公式.
【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.
【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;
∴一次“有效随机转动”可获得“乐”字的概率为:;
(2)画树状图得:
∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,
∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.
23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.
求证:
(1)FC=FG;
(2)AB2=BC•BG.
【考点】相似三角形的判定与性质;垂径定理;切线的性质.
【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;
(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.
【解答】证明:(1)∵EF∥BC,AB⊥BG,
∴EF⊥AD,
∵E是AD的中点,
∴FA=FD,
∴∠FAD=∠D,
∵GB⊥AB,
∴∠GAB+∠G=∠D+∠DCB=90°,
∴∠DCB=∠G,
∵∠DCB=∠GCF,
∴∠GCF=∠G
,∴FC=FG;
(2)连接AC,如图所示:
∵AB⊥BG,
∴AC是⊙O的直径,
∵FD是⊙O的切线,切点为C,
∴∠DCB=∠CAB,
∵∠DCB=∠G,
∴∠CAB=∠G,
∵∠CBA=∠GBA=90°,
∴△ABC∽△GBA,
∴=,
∴AB2=BC•BG.
24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)
(1)试判断该抛物线与x轴交点的情况;
(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.
【考点】二次函数综合题.
【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;
(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.
【解答】解:
(1)由抛物线过M、N两点,
把M、N坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣3x+5,
令y=0可得x2﹣3x+5=0,
该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,
∴抛物线与x轴没有交点;
(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,
∴B点坐标为(0,2)或(0,﹣2),
可设平移后的抛物线解析式为y=x2+mx+n,
①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,
∴平移后的抛物线为y=x2+3x+2,
∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),
∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;
②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,
∴平移后的抛物线为y=x2+x﹣2,
∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),
∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.
25.问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
【考点】四边形综合题.
【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;
(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;
(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.
【解答】解:(1)如图1,△ADC即为所求;
(2)存在,理由:作E关于CD的对称点E′,
作F关于BC的对称点F′,
连接E′F′,交BC于G,交CD于H,连接FG,EH,
则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,
由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,
∴AF′=6,AE′=8,
∴E′F′=10,EF=2,
∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,
∴在边BC、CD上分别存在点G、H,
使得四边形EFGH的周长最小,
最小值为2+10;
(3)能裁得,
理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,
∴∠1=∠2,
在△AEF与△BGF中,,
∴△AEF≌△BGF,
∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,
∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),
∴AF=BG=1,BF=AE=2,
∴DE=4,CG=5,
连接EG,
作△EFG关于EG的对称△EOG,
则四边形EFGO是正方形,∠EOG=90°,
以O为圆心,以EG为半径作⊙O,
则∠EHG=45°的点在⊙O上,
连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,
连接EH′GH′,则∠EH′G=45°,
此时,四边形EFGH′是要想裁得符合要求的面积最大的,
∴C在线段EG的垂直平分线设,
∴点F,O,H′,C在一条直线上,
∵EG=,
∴OF=EG=,
∵CF=2,
∴OC=,
∵OH′=OE=FG=,
∴OH′<OC,
∴点H′在矩形ABCD的内部,
∴可以在矩形ABCD中,裁得符合条件的面积最大的四边形EFGH′部件,
这个部件的面积=EG•FH′=××(+)=5+,
∴当所裁得的四边形部件为四边形EFGH′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m2.
相关文档
- 2013年南充市中考数学试卷及答案(2021-11-0612页
- 2017年浙江省温州市中考数学试卷2021-11-0632页
- 2019年湖北省襄阳市中考数学试卷2021-11-0630页
- 2019年辽宁省本溪市中考数学试卷2021-11-0633页
- 2020年四川省遂宁市中考数学试卷【2021-11-0612页
- 2018年湖北省咸宁市中考数学试卷含2021-11-0614页
- 2013年四川省广安市中考数学试卷及2021-11-0619页
- 2017年黑龙江省龙东地区中考数学试2021-11-0633页
- 2020年贵州省黔西南州中考数学试卷2021-11-0614页
- 2009年浙江省嘉兴市中考数学试卷及2021-11-069页