- 657.00 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年全国各地中考数学试题分类解析汇编(第一辑)第19章 一次函数
一.选择题(共20小题)
1.(2016•南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为( )
A. B.3 C.﹣D.﹣3
【分析】本题较为简单,把坐标代入解析式即可求出m的值.
【解答】解:把点(1,m)代入y=3x,可得:m=3,
故选B
【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.
2.(2016•泉州)如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为( )
A.1 B.2 C.3 D.4
【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.
【解答】解:如图,
当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),
当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),
当∠C为直角时,过AB中点E(﹣3,0),作垂线与直线的交点为F(﹣3,),则EF=>5,
所以以5为半径,以点E为圆心的圆与直线无交点,即∠C为直角不存在;
综上所述,共有二个点能与点A,点B组成直角三角形,
故选:B.
【点评】本题考查的是一次函数综合题,在解答此题时要分三种情况进行讨论,关键是根据圆周角定理判断∠C为直角的情况是否存在.
3.(2016•陕西)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是( )
A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0
【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.[来源:学_科_网Z_X_X_K]
【解答】解:把点A(a,b)代入正比例函数y=﹣x,
可得:﹣3a=2b,
可得:3a+2b=0,
故选D
【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
4.(2016•台湾)坐标平面上,某个一次函数的图形通过(5,0)、(10,﹣10)两点,判断此函数的图形会通过下列哪一点?( )
A.(,9) B.(,9) C.(,9) D.(,9)
【分析】设该一次函数的解析式为y=kx+b,由函数图象上两点的坐标利用待定系数法即可求出该一次函数的解析式,再分别代入4个选项中点坐标的横坐标去验证点是否在直线上,由此即可得出结论.
【解答】解:设该一次函数的解析式为y=kx+b,
将点(5,0)、(10,﹣10)代入到y=kx+b中得:
,解得:.
∴该一次函数的解析式为y=﹣2x+10.
A、y=﹣2×+10=9≠9,A中点不在直线上;
B、y=﹣2×+10=9≠9,B中点不在直线上;
C、y=﹣2×+10=9,C中点在直线上;
D、y=﹣2×+10=9≠9,D中点不在直线上.[来源:Z*xx*k.Com]
故选C.
【点评】本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是求出该一次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.
5.(2016•呼和浩特)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为( )
A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0
【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.
【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,
∵函数值y随x的增大而增大,
∴k﹣1>0,解得k>1;
∵图象与x轴的正半轴相交,
∴b>0.
故选A.
【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.
6.(2016•玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是( )
A.点(0,k)在l上 B.l经过定点(﹣1,0)
C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限
【分析】直接根据一次函数的性质选择不正确选项即可.
【解答】解:A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;
B、当x=﹣1时,y=﹣k+k=0,此选项正确;
C、当k>0时,y随x的增大而增大,此选项正确;
D、不能确定l经过第一、二、三象限,此选项错误;
故选D.
【点评】本题主要考查了一次函数的性质,解题的关键是掌握一次函数的性质,一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).此题难度不大.
7.(2016•无锡)一次函数y=x﹣b与y=x﹣1的图象之间的距离等于3,则b的值为( )
A.﹣2或4 B.2或﹣4 C.4或﹣6 D.﹣4或6
【分析】将两个一次函数解析式进行变形,根据两平行线间的距离公式即可得出关于b的含绝对值符号的一元一次方程,解方程即可得出结论.
【解答】解:一次函数y=x﹣b可变形为:4x﹣3y﹣3b=0;
一次函数y=x﹣1可变形为4x﹣3y﹣3=0.
两平行线间的距离为:d==|b﹣1|=3,
解得:b=﹣4或b=6.
故选D.
【点评】本题考查了一次函数的性质以及含绝对值符合的一元一次方程,解题的关键是结合函数的解析式与两平行线间的距离公式得出关于b的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,巧妙的借用平行线间的距离公式将几何问题转化为代数(方程)问题来解决.
8.(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是( )
A. B. C. D.
【分析】先求出k的取值范围,再判断出1﹣k及k﹣1的符号,进而可得出结论.
【解答】解:∵式子+(k﹣1)0有意义,
∴,解得k>1,
∴1﹣k<0,k﹣1>0,
∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.
故选C.
【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.
9.(2016•河北)若k≠0,b<0,则y=kx+b的图象可能是( )
A. B. C. D.
【分析】当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.[来源:学科网ZXXK]
【解答】解:因为b<0时,直线与y轴交于负半轴,
故选B
【点评】本题考查一次函数的图象,关键是根据一次函数的图象是一条直线解答.
10.(2016•湘西州)一次函数y=﹣2x+3的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.
【解答】解:∵y=﹣2x+3中,k=﹣2<0,
∴必过第二、四象限,
∵b=3,
∴交y轴于正半轴.
∴过第一、二、四象限,不过第三象限,
故选:C.
【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.
11.(2016•邵阳)一次函数y=﹣x+2的图象不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【分析】根据一次函数的系数确定函数图象经过的象限,由此即可得出结论.
【解答】解:∵一次函数y=﹣x+2中k=﹣1<0,b=2>0,
∴该函数图象经过第一、二、四象限.
故选C.
【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据函数系数的正负确定函数图象经过的象限是关键.
12.(2016•郴州)当b<0时,一次函数y=x+b的图象大致是( )
A. B. C. D.
【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论.
【解答】解:∵k=1>0,b<0,
∴一次函数y=x+b的图象经过第一、三、四象限.
故选B.
【点评】
本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键.
13.(2015•广东)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )
A. B. C. D.
【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可.
【解答】解:设正方形的边长为a,
当P在AB边上运动时,y=ax;
当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2;
当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2;
当P在AD边上运动时,y=a(4a﹣x)=﹣ax﹣2a2,[来源:学。科。网Z。X。X。K]
大致图象为:
故选C.
【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.
14.(2016•临夏州)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )
A. B. C. D.
【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【解答】解:过A点作AH⊥BC于H,
∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,BH=CH=AH=BC=2,
当0≤x≤2时,如图1,
∵∠B=45°,
∴PD=BD=x,
∴y=•x•x=x2;
当2<x≤4时,如图2,
∵∠C=45°,
∴PD=CD=4﹣x,
∴y=•(4﹣x)•x=﹣x2+2x,
故选B
【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
15.(2016•温州)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是( )
A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小
【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.
【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,
∴AB===2,设PD=x,AB边上的高为h,
h==,
∵PD∥BC,
∴=,
∴AD=2x,AP=x,
∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,
∴当0<x<1时,S1+S2的值随x的增大而减小,
当1≤x≤2时,S1+S2的值随x的增大而增大.
故选C.
【点评】本题考查动点问题的函数图象、三角形面积,平行线的性质、勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.
16.(2016•荆门)如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是A;
故选:A.
【点评】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
17.(2016•衡阳)如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为( )
A. B. C. D.
【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.
【解答】解:设∠AOM=α,点P运动的速度为a,
当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,
由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;[来源:学#科#网]
当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,
故本段图象应为与横轴平行的线段;
当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,
故本段图象应该为一段下降的线段;
故选:A.
【点评】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.
18.(2016•西宁)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOD=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中,
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点评】本题考查动点问题的函数图象,解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
19.(2016•泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )
A. B. C. D.
【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.
【解答】解:∵△ABC是正三角形,
∴∠B=∠C=60°,
∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,
∴∠BPD=∠CAP,
∴△BPD∽△CAP,
∴BP:AC=BD:PC,
∵正△ABC的边长为4,BP=x,BD=y,
∴x:4=y:(4﹣x),
∴y=﹣x2+x.
故选C.
【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.
20.(2016•烟台)如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是( )
A. B. C. D.
【分析】根据题意分1<x<与≤x<2两种情况,确定出y与x的关系式,即可确定出图象.
【解答】解:当P在OC上运动时,根据题意得:sin∠APB=,
∵OA=1,AP=x,sin∠APB=y,
∴xy=1,即y=(1<x<),
当P在上运动时,∠APB=∠AOB=45°,
此时y=(≤x<2),
图象为:,
故选C.
【点评】此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.
相关文档
- 2016年全国各地中考数学试题分类解2021-11-109页
- 2016年全国各地中考数学试题分类解2021-11-066页
- 2016年全国各地中考数学试题分类解2021-11-0618页
- 2016年全国各地中考数学试题分类解2021-11-066页
- 2016年全国各地中考数学试题分类解2021-11-0610页
- 2016年全国各地中考数学试题分类解2021-11-0614页
- 台州市中考数学试题分类解析专题图2021-05-1325页
- 成都中考数学试题分类解析图形的变2021-05-1325页
- 中考上海市2002中考数学试题分类解2021-05-1319页
- 江苏无锡中考数学试题分类解析专题2021-05-1327页