- 207.50 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1
24.4 解直角三角形
第 2 课时
教学目标
1.使学生掌握仰角、俯角的意义,并学会正确地判断;
2.初步掌握将实际问题转化为解直角三角形问题的能力.
教学重难点
【教学重点】
仰角、俯角的意义.
【教学难点】
将实际问题转化为解直角三角形问题.
课前准备
无
教学过程
一、情境导入
在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线
就构成了直角三角形.当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角
叫做仰角,在水平线下方的角叫做俯角.今天我们就学习和仰角、俯角有关的应用性问题.
二、合作探究
探究点:利用仰(俯)角解决实际问题
【类型一】 利用仰角求高度
星期天,身高均为 1.6 米的小红、小涛来到一个公园,用他们所学的知识测算一座塔
的高度.如图,小红站在 A 处测得她看塔顶 C 的仰角α为 45°,小涛站在 B 处测得塔顶 C
的仰角β为 30°,他们又测出 A、B 两点的距离为 41.5m,假设他们的眼睛离头顶都是 10cm,
求塔高(结果保留根号).
解析:设塔高为 xm,利用锐角三角函数关系得出 PM 的长,再利用CP
PN
=tan30°,求出 x 的
值即可.
2
解:设塔底面中心为 O,塔高 xm,MN∥AB 与塔中轴线相交于点 P,得到△CPM、△CPN 是直
角三角形,则x-(1.6-0.1)
PM
=tan45°,∵tan45°=1,∴PM=CP=x-1.5.在 Rt△CPN
中,CP
PN
=tan30°,即 x-1.5
x-1.5+41.5
= 3
3
,解得 x=83 3+89
4
.
答:塔高为 83 3+89
4
m.
方法总结:解决此类问题要了解角与角之间的关系,找到与已知和未知相关联的直角三角
形.当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
【类型二】 利用俯角求高度
如图,在两建筑物之间有一旗杆 EG,高 15 米,从 A 点经过旗杆顶部 E 点恰好看到矮
建筑物的墙角 C 点,且俯角α为 60°,又从 A 点测得 D 点的俯角β为 30°.若旗杆底部 G
点为 BC 的中点,求矮建筑物的高 CD.
解析:根据点 G 是 BC 的中点,可判断 EG 是△ABC 的中位线,求出 AB.在 Rt△ABC 和 Rt△AFD
中,利用特殊角的三角函数值分别求出 BC、DF,继而可求出 CD 的长度.
解:过点 D 作 DF⊥AF 于点 F,∵点 G 是 BC 的中点,EG∥AB,∴EG 是△ABC 的中位线,∴AB
=2EG=30m.在 Rt△ABC 中,∵∠CAB=30°,∴BC=ABtan∠BAC=30× 3
3
=10 3m.在 Rt△
AFD 中,∵AF=BC=10 3m,∴FD=AF·tanβ=10 3× 3
3
=10m,∴CD=AB-FD=30-10
=20m.
答:矮建筑物的高为 20m.
方法总结:本题考查了利用俯角求高度,解答本题的关键是构造直角三角形,利用三角函数
的知识求解相关线段的长度.
【类型三】 利用俯角求不可到达的两点之间的距离
如图,为了测量河的宽度 AB,测量人员在高 21m 的建筑物 CD 的顶端 D 处测得河岸 B
处的俯角为 45°,测得河对岸 A 处的俯角为 30°(A、B、C 在同一条直线上),则河的宽度
AB 约是多少 m(精确到 0.1m,参考数据: 2≈1.41, 3≈1.73)?
3
解析:在 Rt△ACD 中,根据已知条件求出 AC 的值,再在 Rt△BCD 中,根据∠EDB=45°,求
出 BC=CD=21m,最后根据 AB=AC-BC,代值计算即可.
解:∵在 Rt△ACD 中,CD=21m,∠DAC=30°,∴AC= CD
tan30°
=
21
3
3
=21 3m.∵在 Rt△BCD
中,∠EDB=45°,∴∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=21 3-21≈15.3(m).则
河的宽度 AB 约是 15.3m.
方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,把
实际问题化归为直角三角形中边角关系问题加以解决.
【类型四】 仰角和俯角的综合
某数学兴趣小组的同学在一次数学活动中,为了测量某建筑物 AB 的高,他们来到与建
筑物 AB 在同一平地且相距 12m 的建筑物 CD 上的 C 处观察,测得此建筑物顶部 A 的仰角为
30°、底部 B 的俯角为 45°.求建筑物 AB 的高(精确到 1m,可供选用的数据: 2≈1.4, 3
≈1.7).
解析:过点 C 作 AB 的垂线 CE,垂足为 E,根据题意可得出四边形 CDBE 是正方形,再由 BD
=12m 可知 BE=CE=12m,由 AE=CE·tan30°得出 AE 的长,进而可得出结论.
解:过点 C 作 AB 的垂线,垂足为 E,∵CD⊥BD,AB⊥BD,∠ECB=45°,∴四边形 CDBE 是
正方形.∵BD=12m,∴BE=CE=12m,∴AE=CE·tan30°=12× 3
3
=4 3(m),∴AB=4 3
+12≈19(m).
答:建筑物 AB 的高为 19m.
方法总结:本题考查的是解直角三角形的应用中仰角、俯角问题,根据题意作出辅助线,构
造出直角三角形是解答此题的关键.
三、板书设计
1.仰角和俯角的概念;
2.利用仰角和俯角求高度;
3.利用仰角和俯角求不可到达两点之间的距离;
4.仰角和俯角的综合.
四、教学反思
4
备课时尽可能站在学生的角度上思考问题,设计好教学过程中的每一个细节.上课前多
揣摩,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和
失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角.使课堂更加鲜活,
充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步.只有这样,才能
真正提高课堂教学效率.
相关文档
- 中考数学专题复习练习:直线和圆的位2021-11-106页
- 人教版物理九年级第18章《电功率》2021-11-108页
- 北师大版九年级数学(下册)第一章直角2021-11-106页
- 2019年云南省中考数学试卷2021-11-1021页
- 2019年黑龙江省大庆市中考数学试卷2021-11-1030页
- 统编版数学九年级上期末测试卷2021-11-1091页
- 2008年中考数学分类真理练习1、实2021-11-1017页
- 2020年中考数学专题复习:几何知识点2021-11-1011页
- 2019年广西桂林市中考数学试卷2021-11-1027页
- 九年级道德与法治上册第一单元富强2021-11-107页