- 248.08 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
九年级几何知识点总结
证明(一)
1、本套教材选用如下命题作为公理:
(1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)、两条平行线被第三条直线所截,同位角相等。
(3)、两边及其夹角对应相等的两个三角形全等。
(4)、两角及其夹边对应相等的两个三角形全等。
(5)、三边对应相等的两个三角形全等。
(6)、全等三角形的对应边相等、对应角相等。
此外,等式的有关性质和不等式的有关性质都可以看做公理。
2、平行线的判定定理
公理 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
定理 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
定理 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3、平行线的性质定理
公理 两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
定理 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
定理 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
4、三角形内角和定理 三角形三个内角的和等于 180 。
5、三角形内角和定理的推论
三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角。
证明(二)
一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或
“AAS”)。
二、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的两个底角相等(简称:等边对等角)
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于 45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为 a,底边长为 b,则
2
b 知识点总结
圆与三角形、四边形一样都是研究相关图形中的线、角、周长、面积等知识。包括性
质定理与判定定理及公式。
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合;
圆的外部:可以看作是到定点的距离大于定长的点的集合;
圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;
2、到线段两端点距离相等的点的轨迹是:线段的中垂线;
3、到角两边距离相等的点的轨迹是:角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条
直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都
相等的一条直线
点与圆的位置关系:
点在圆内 dr 点 A 在圆外
直线与圆的位置关系:
直线与圆相离 d>r 无交点
直线与圆相切 d=r 有一个交点
直线与圆相交 dR+r
外切(图 2) 有一个交点 d=R+r
相交(图 3) 有两个交点 R-r