• 711.00 KB
  • 2021-11-10 发布

2017年贵州省遵义市中考数学试卷

  • 33页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2017年贵州省遵义市中考数学试卷 ‎ ‎ 一、选择题(本大题共12小题,每小题3分,共36分)‎ ‎1.(3分)﹣3的相反数是(  )‎ A.﹣3 B.3 C. D.‎ ‎2.(3分)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为(  )‎ A.2.58×1011 B.2.58×1012 C.2.58×1013 D.2.58×1014‎ ‎3.(3分)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是(  )‎ A. B. C. D.‎ ‎4.(3分)下列运算正确的是(  )‎ A.2a5﹣3a5=a5 B.a2•a3=a6 C.a7÷a5=a2 D.(a2b)3=a5b3‎ ‎5.(3分)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是(  )‎ A.28°,30° B.30°,28° C.31°,30° D.30°,30°‎ ‎6.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为(  )‎ A.45° B.30° C.20° D.15°‎ ‎7.(3分)不等式6﹣4x≥3x﹣8的非负整数解为(  )‎ A.2个 B.3个 C.4个 D.5个 ‎8.(3分)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是(  )‎ A.18πcm2 B.27πcm2 C.18cm2 D.27cm2‎ ‎9.(3分)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为(  )‎ A.m≤ B.m C.m≤ D.m ‎10.(3分)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是(  )‎ A.4.5 B.5 C.5.5 D.6‎ ‎11.(3分)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是(  )‎ A.①③ B.②③ C.②④ D.②③④‎ ‎12.(3分)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为(  )‎ A.11 B.12 C.13 D.14‎ ‎ ‎ 二、填空题(本大题共6小题,每小题4分,共24分)‎ ‎13.(4分)计算:=   .‎ ‎14.(4分)一个正多边形的一个外角为30°,则它的内角和为   .‎ ‎15.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是   .‎ ‎16.(4分)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有   两.(注:明代时1斤=16两,故有“半斤八两”这个成语)‎ ‎17.(4分)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为   .‎ ‎18.(4分)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是   .‎ ‎ ‎ 三、解答题(本大题共9小题,共90分)‎ ‎19.(6分)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.‎ ‎20.(8分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.‎ ‎21.(8分)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).‎ ‎(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是   ;‎ ‎(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.‎ ‎22.(10分)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.‎ ‎(1)求主桥AB的长度;‎ ‎(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.‎ ‎(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)‎ ‎23.(10分)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:‎ ‎(1)本次参与调查的人数有   人;‎ ‎(2)关注城市医疗信息的有   人,并补全条形统计图;‎ ‎(3)扇形统计图中,D部分的圆心角是   度;‎ ‎(4)说一条你从统计图中获取的信息.‎ ‎24.(10分)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.‎ ‎(1)求证:四边形ACBP是菱形;‎ ‎(2)若⊙O半径为1,求菱形ACBP的面积.‎ ‎25.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:‎ 问题1:单价 该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?‎ 问题2:投放方式 该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放 辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.‎ ‎26.(12分)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.‎ ‎(1)连接CQ,证明:CQ=AP;‎ ‎(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;‎ ‎(3)猜想PF与EQ的数量关系,并证明你的结论.‎ ‎27.(14分)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.‎ ‎(1)求该抛物线的函数关系式与C点坐标;‎ ‎(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?‎ ‎(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);‎ i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;‎ ii:试求出此旋转过程中,(NA+NB)的最小值.‎ ‎ ‎ ‎2017年贵州省遵义市中考数学试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共12小题,每小题3分,共36分)‎ ‎1.(3分)(2017•遵义)﹣3的相反数是(  )‎ A.﹣3 B.3 C. D.‎ ‎【分析】依据相反数的定义解答即可.‎ ‎【解答】解:﹣3的相反数是3.‎ 故选:B.‎ ‎【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.‎ ‎ ‎ ‎2.(3分)(2017•遵义)2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为(  )‎ A.2.58×1011 B.2.58×1012 C.2.58×1013 D.2.58×1014‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:将2580亿用科学记数法表示为:2.58×1011.‎ 故选:A.‎ ‎【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.‎ ‎ ‎ ‎3.(3分)(2017•遵义)把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是(  )‎ A. B. C. D.‎ ‎【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.‎ ‎【解答】解:重新展开后得到的图形是C,‎ 故选C.‎ ‎【点评】本题主要考查了剪纸问题,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.‎ ‎ ‎ ‎4.(3分)(2017•遵义)下列运算正确的是(  )‎ A.2a5﹣3a5=a5 B.a2•a3=a6 C.a7÷a5=a2 D.(a2b)3=a5b3‎ ‎【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.‎ ‎【解答】解:A、原式=﹣a5,故本选项错误;‎ B、原式=a5,故本选项错误;‎ C、原式=a2,故本选项正确;‎ D、原式=a6b3,故本选项错误;‎ 故选:C.‎ ‎【点评】本题综合考查了合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方,属于基础题.‎ ‎ ‎ ‎5.(3分)(2017•遵义)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是(  )‎ A.28°,30° B.30°,28° C.31°,30° D.30°,30°‎ ‎【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.‎ ‎【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,‎ ‎30出现了3次,出现的次数最多,则众数是30;[来源:Z,xx,k.Com]‎ 故选D.‎ ‎【点评】此题考查了平均数和众数,平均数是指在一组数据中所有数据之和再除以数据的个数,众数是一组数据中出现次数最多的数,难度不大.‎ ‎ ‎ ‎6.(3分)(2017•遵义)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为(  )‎ A.45° B.30° C.20° D.15°‎ ‎【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.‎ ‎【解答】解:∵∠1=30°,‎ ‎∴∠3=90°﹣30°=60°,[来源:学科网ZXXK]‎ ‎∵直尺的对边平行,‎ ‎∴∠4=∠3=60°,‎ 又∵∠4=∠2+∠5,∠5=45°,‎ ‎∴∠2=60°﹣45°=15°,‎ 故选:D.‎ ‎【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.‎ ‎ ‎ ‎7.(3分)(2017•遵义)不等式6﹣4x≥3x﹣8的非负整数解为(  )‎ A.2个 B.3个 C.4个 D.5个 ‎【分析】‎ 首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.‎ ‎【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,‎ 合并同类项得,﹣7x≥﹣14,‎ 系数化为1得,x≤2.‎ 故其非负整数解为:0,1,2,共3个.‎ 故选B.‎ ‎【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.‎ ‎ ‎ ‎8.(3分)(2017•遵义)已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是(  )‎ A.18πcm2 B.27πcm2 C.18cm2 D.27cm2‎ ‎【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.‎ ‎【解答】解:∵圆锥的底面积为9πcm2,‎ ‎∴圆锥的底面半径为3,‎ ‎∵母线长为6cm,‎ ‎∴侧面积为3×6π=18πcm2,‎ 故选A;‎ ‎【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的侧面积的计算方法,难度不大.‎ ‎ ‎ ‎9.(3分)(2017•遵义)关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为(  )‎ A.m≤ B.m C.m≤ D.m ‎【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.‎ ‎【解答】解:根据题意得△=32﹣4m>0,‎ 解得m<.‎ 故选B.‎ ‎【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.‎ ‎ ‎ ‎10.(3分)(2017•遵义)如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是(  )‎ A.4.5 B.5 C.5.5 D.6‎ ‎【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.‎ ‎【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,‎ ‎∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,‎ ‎∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,‎ 同理可得△AEG的面积=,‎ ‎△BCE的面积=×△ABC的面积=6,‎ 又∵FG是△BCE的中位线,‎ ‎∴△EFG的面积=×△BCE的面积=,‎ ‎∴△AFG的面积是×3=,‎ 故选:A.‎ ‎【点评】本题主要考查了三角形的面积,解决问题的关键是掌握:三角形的中线将三角形分成面积相等的两部分.‎ ‎ ‎ ‎11.(3分)(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是(  )‎ A.①③ B.②③ C.②④ D.②③④‎ ‎【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;‎ ‎②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;‎ ‎③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;‎ ‎④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.‎ ‎【解答】解:①∵二次函数图象的开口向下,‎ ‎∴a<0,‎ ‎∵二次函数图象的对称轴在y轴右侧,‎ ‎∴﹣>0,‎ ‎∴b>0,‎ ‎∵二次函数的图象与y轴的交点在y轴的正半轴上,‎ ‎∴c>0,‎ ‎∴abc<0,故①错误;‎ ‎②∵抛物线y=ax2+bx+c经过点(﹣1,0),‎ ‎∴a﹣b+c=0,故②正确;‎ ‎③∵a﹣b+c=0,∴b=a+c.‎ 由图可知,x=2时,y<0,即4a+2b+c<0,‎ ‎∴4a+2(a+c)+c<0,‎ ‎∴6a+3c<0,∴2a+c<0,故③正确;‎ ‎④∵a﹣b+c=0,∴c=b﹣a.‎ 由图可知,x=2时,y<0,即4a+2b+c<0,‎ ‎∴4a+2b+b﹣a<0,‎ ‎∴3a+3b<0,∴a+b<0,故④正确.‎ 故选D.‎ ‎【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:‎ ‎①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.‎ ‎ [来源:学科网ZXXK]‎ ‎12.(3分)(2017•遵义)如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为(  )‎ A.11 B.12 C.13 D.14‎ ‎【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.‎ ‎【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,‎ ‎∴==.‎ ‎∵E是BC中点,‎ ‎∴==.‎ ‎∵EF∥AD,‎ ‎∴==,‎ ‎∴CF=CA=13.‎ 故选C.‎ ‎【点评】本题考查了相似三角形的判定与性质、角平分线的性质、线段的中点以及平行线的性质,根据角平分线的性质结合线段的中点,找出=是解题的关键.‎ ‎ ‎ 二、填空题(本大题共6小题,每小题4分,共24分)‎ ‎13.(4分)(2017•遵义)计算:= 3 .‎ ‎【分析】先进行二次根式的化简,然后合并.‎ ‎【解答】解:=2+‎ ‎=3.‎ 故答案为:3.‎ ‎【点评】‎ 本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简与合并.‎ ‎ ‎ ‎14.(4分)(2017•遵义)一个正多边形的一个外角为30°,则它的内角和为 1800° .‎ ‎【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.‎ ‎【解答】解:这个正多边形的边数为=12,‎ 所以这个正多边形的内角和为(12﹣2)×180°=1800°.‎ 故答案为1800°.‎ ‎【点评】本题考查了多边形内角与外角:多边形内角和定理为(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.‎ ‎ ‎ ‎15.(4分)(2017•遵义)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是  .‎ ‎【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.‎ ‎【解答】解:按一定规律排列的一列数依次为:,,,,,,…,‎ 按此规律,第n个数为,‎ ‎∴当n=100时,=,‎ 即这列数中的第100个数是,‎ 故答案为:.‎ ‎【点评】本题考查了数字变化类问题,解决问题的关键是找出变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法.‎ ‎ ‎ ‎16.(4分)(2017•遵义)明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有 46 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)‎ ‎【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.‎ ‎【解答】解:设有x人,依题意有 ‎7x+4=9x﹣8,‎ 解得x=6,‎ ‎7x+4=42+4=46.‎ 答:所分的银子共有46两.‎ 故答案为:46.‎ ‎【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解.‎ ‎ ‎ ‎17.(4分)(2017•遵义)如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为  .‎ ‎【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△‎ ODE中,由勾股定理求出DE=,得出CD=2DE=即可.‎ ‎【解答】解:连接OD,作OE⊥CD于E,如图所示:‎ 则CE=DE,‎ ‎∵AB是⊙O的直径,AB=4,点M是OA的中点,‎ ‎∴OD=OA=2,OM=1,‎ ‎∵∠OME=∠CMA=45°,‎ ‎∴△OEM是等腰直角三角形,‎ ‎∴OE=OM=,‎ 在Rt△ODE中,由勾股定理得:DE==,‎ ‎∴CD=2DE=;‎ 故答案为:.‎ ‎【点评】本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE是解决问题的关键.‎ ‎ ‎ ‎18.(4分)(2017•遵义)如图,点E,F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是  .‎ ‎【分析】证明△BPE∽△‎ BHF,利用相似比可得HF=4PE,根据反比例函数图象上点的坐标特征,设E点坐标为(t,),则F点的坐标为(3t,),由于S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根据梯形面积公式计算即可.‎ ‎【解答】解:作EP⊥y轴于P,EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图所示:‎ ‎∵EP⊥y轴,FH⊥y轴,‎ ‎∴EP∥FH,‎ ‎∴△BPE∽△BHF,‎ ‎∴=,即HF=3PE,‎ 设E点坐标为(t,),则F点的坐标为(3t,),‎ ‎∵S△OEF+S△OFD=S△OEC+S梯形ECDF,‎ 而S△OFD=S△OEC=×2=1,‎ ‎∴S△OEF=S梯形ECDF=(+)(3t﹣t)=;‎ 故答案为:.‎ ‎【点评】本题考查了反比例函数的几何意义、相似三角形的判定与性质;掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义,证明三角形相似是解决问题的关键.‎ ‎ ‎ 三、解答题(本大题共9小题,共90分)‎ ‎19.(6分)(2017•遵义)计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.‎ ‎【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.‎ ‎【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017‎ ‎=2+1﹣2﹣1‎ ‎=0‎ ‎【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.‎ ‎ [来源:学。科。网]‎ ‎20.(8分)(2017•遵义)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.‎ ‎【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.‎ ‎【解答】解:‎ ‎(﹣)÷‎ ‎=[﹣)÷‎ ‎=(﹣)÷‎ ‎=×‎ ‎=x+2,‎ ‎∵x2﹣4≠0,x﹣3≠0,‎ ‎∴x≠2且x≠﹣2且x≠3,‎ ‎∴可取x=1代入,原式=3.‎ ‎【点评】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.‎ ‎ ‎ ‎21.(8分)(2017•遵义)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).‎ ‎(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是  ;‎ ‎(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.‎ ‎【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;‎ ‎(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.‎ ‎【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,‎ ‎∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,‎ 故答案为:;‎ ‎(2)画树状图如下:‎ 由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,‎ ‎∴小明恰好取到两个白粽子的概率为=.‎ ‎【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.‎ ‎ ‎ ‎22.(10分)(2017•遵义)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.‎ ‎(1)求主桥AB的长度;‎ ‎(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.‎ ‎(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)‎ ‎【分析】(1)在Rt△ABP中,由AB=可得答案;‎ ‎(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.‎ ‎【解答】解:(1)由题意知∠ABP=30°、AP=97,[来源:学,科,网Z,X,X,K]‎ ‎∴AB====97≈168m,‎ 答:主桥AB的长度约为168m;‎ ‎(2)∵∠ABP=30°、AP=97,‎ ‎∴PB=2PA=194,‎ 又∵∠DBC=∠DBA=90°、∠PBA=30°,‎ ‎∴∠DBP=∠DPB=60°,‎ ‎∴△PBD是等边三角形,‎ ‎∴DB=PB=194,‎ 在Rt△BCD中,∵∠C=80°36′,‎ ‎∴BC==≈32,‎ 答:引桥BC的长约为32m.‎ ‎【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,熟练掌握仰角俯角的定义和三角函数的定义是解题的关键.‎ ‎ ‎ ‎23.(10分)(2017•遵义)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:‎ ‎(1)本次参与调查的人数有 1000 人;‎ ‎(2)关注城市医疗信息的有 150 人,并补全条形统计图;‎ ‎(3)扇形统计图中,D部分的圆心角是 144 度;‎ ‎(4)说一条你从统计图中获取的信息.‎ ‎【分析】(1)由C类别人数占总人数的20%即可得出答案;‎ ‎(2)根据各类别人数之和等于总人数可得B类别的人数;‎ ‎(3)用360°乘以D类别人数占总人数的比例可得答案;‎ ‎(4)根据条形图或扇形图得出合理信息即可.‎ ‎【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),‎ 故答案为:1000;‎ ‎(2)关注城市医疗信息的有1000﹣(250+200+400)=150人,补全条形统计图如下:‎ 故答案为:150;‎ ‎(3)扇形统计图中,D部分的圆心角是360°×=144°,‎ 故答案为:144;‎ ‎(4)由条形统计图可知,市民关注交通信息的人数最多.‎ ‎【点评】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.‎ ‎ ‎ ‎24.(10分)(2017•遵义)如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.‎ ‎(1)求证:四边形ACBP是菱形;‎ ‎(2)若⊙O半径为1,求菱形ACBP的面积.‎ ‎【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠‎ ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;‎ ‎(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.‎ ‎【解答】解:(1)连接AO,BO,‎ ‎∵PA、PB是⊙O的切线,‎ ‎∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,‎ ‎∴∠AOP=60°,‎ ‎∵OA=OC,‎ ‎∴∠OAC=∠OCA,‎ ‎∴∠AOP=∠CAO+∠ACO,‎ ‎∴∠ACO=30°,‎ ‎∴∠ACO=∠APO,‎ ‎∴AC=AP,‎ 同理BC=PB,‎ ‎∴AC=BC=BP=AP,‎ ‎∴四边形ACBP是菱形;‎ ‎(2)连接AB交PC于D,‎ ‎∴AD⊥PC,‎ ‎∴OA=1,∠AOP=60°,‎ ‎∴AD=OA=,‎ ‎∴PD=,‎ ‎∴PC=3,AB=,‎ ‎∴菱形ACBP的面积=AB•PC=.‎ ‎【点评】本题考查了切线的性质,菱形的判定和性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.‎ ‎ ‎ ‎25.(12分)(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:‎ 问题1:单价 该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?‎ 问题2:投放方式 该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.‎ ‎【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;‎ 问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.‎ ‎【解答】解:问题1‎ 设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得 ‎50x+50(x+10)=7500,‎ 解得x=70,‎ ‎∴x+10=80,‎ 答:A、B两型自行车的单价分别是70元和80元;‎ 问题2‎ 由题可得,×1000+×1000=150000,‎ 解得a=15,‎ 经检验:a=15是所列方程的解,‎ 故a的值为15.‎ ‎【点评】本题主要考查了一元一次方程以及分式方程的应用,解题时注意:列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.‎ ‎ ‎ ‎26.(12分)(2017•遵义)边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.‎ ‎(1)连接CQ,证明:CQ=AP;‎ ‎(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;‎ ‎(3)猜想PF与EQ的数量关系,并证明你的结论.‎ ‎【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;‎ ‎(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值;‎ ‎(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,‎ 得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.‎ 如图4,当F在AD的延长线上时,同理可得结论.‎ ‎【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,‎ ‎∴BP=BQ,∠PBQ=90°.‎ ‎∵四边形ABCD是正方形,‎ ‎∴BA=BC,∠ABC=90°. ‎ ‎∴∠ABC=∠PBQ.‎ ‎∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.‎ 在△BAP和△BCQ中,‎ ‎∵,‎ ‎∴△BAP≌△BCQ(SAS). ‎ ‎∴CQ=AP;‎ ‎(2)解:如图1,∵四边形ABCD是正方形,‎ ‎∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,‎ ‎∴∠APB+∠ABP=180°﹣45°=135°,‎ ‎∵DC=AD=2,‎ 由勾股定理得:AC==4,‎ ‎∵AP=x,‎ ‎∴PC=4﹣x,‎ ‎∵△PBQ是等腰直角三角形,‎ ‎∴∠BPQ=45°,‎ ‎∴∠APB+∠CPQ=180°﹣45°=135°,‎ ‎∴∠CPQ=∠ABP,‎ ‎∵∠BAC=∠ACB=45°,‎ ‎∴△APB∽△CEP,‎ ‎∴,‎ ‎∴,‎ ‎∴y=x(4﹣x)=﹣x(0<x<4),‎ 由CE=BC==,‎ ‎∴y=﹣x=,‎ x2﹣4x=3=0,‎ ‎(x﹣3)(x﹣1)=0,‎ x=3或1,‎ ‎∴当x=3或1时,CE=BC;‎ ‎(3)解:结论:PF=EQ,理由是:‎ 如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,‎ ‎∵∠BPQ=45°,‎ ‎∴∠GPB=45°,‎ ‎∴∠GPB=∠PQB=45°,‎ ‎∵PB=BQ,∠ABP=∠CBQ,‎ ‎∴△PGB≌△QEB,‎ ‎∴EQ=PG,‎ ‎∵∠BAD=90°,‎ ‎∴F、A、G、P四点共圆,‎ 连接FG,‎ ‎∴∠FGP=∠FAP=45°,‎ ‎∴△FPG是等腰直角三角形,‎ ‎∴PF=PG,‎ ‎∴PF=EQ.‎ 当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.‎ ‎【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、四点共圆的性质和判定、相似三角形的判定与性质等知识;本题综合性强,有一定难度.‎ ‎ ‎ ‎27.(14分)(2017•遵义)如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.‎ ‎(1)求该抛物线的函数关系式与C点坐标;‎ ‎(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?‎ ‎(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);‎ i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;‎ ii:试求出此旋转过程中,(NA+NB)的最小值.‎ ‎【分析】(1)根据已知条件得到B(0,),A(﹣6,0),解方程组得到抛物线的函数关系式为:y=﹣x2﹣x+,于是得到C(1,0);‎ ‎(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;‎ ‎(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到=,于是得到结论;‎ ii:根据题意得到N在以O为圆心,4为半径的半圆上,由(i)知,=,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.‎ ‎【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,‎ ‎∴B(0,),A(﹣6,0),‎ 把B(0,),A(﹣6,0)代入y=ax2+bx﹣a﹣b得,‎ ‎∴,‎ ‎∴抛物线的函数关系式为:y=﹣x2﹣x+,‎ 令y=0,则=﹣x2﹣x+=0,‎ ‎∴x1=﹣6,x2=1,‎ ‎∴C(1,0);‎ ‎(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,‎ ‎∴D(m,m+),当DE为底时,‎ 作BG⊥DE于G,则EG=GD=ED,GM=OB=,‎ ‎∵DM+DG=GM=OB,‎ ‎∴m+(﹣m2﹣m+﹣m﹣)=,‎ 解得:m1=﹣4,m2=0(不合题意,舍去),‎ ‎∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;‎ ‎(3)i:存在,‎ ‎∵ON=OM′=4,OB=,‎ ‎∵∠NOP=∠BON,‎ ‎∴当△NOP∽△BON时,=,‎ ‎∴不变,‎ 即OP==3,‎ ‎∴P(0,3)‎ ii:∵N在以O为圆心,4为半径的半圆上,由(i)知,=,‎ ‎∴NP=NB,‎ ‎∴(NA+NB)的最小值=NA+NP,‎ ‎∴此时N,A,P三点共线,‎ ‎∴(NA+NB)的最小值==3.‎ ‎【点评】本题考查了待定系数法求函数的解析式,等腰三角形的性质,相似三角形的性质,正确的作出辅助线是解题的关键.‎ ‎ ‎ ‎ ‎