• 53.50 KB
  • 2021-11-10 发布

九年级数学上册第二十一章一元二次方程21-3实际问题与一元二次方程第1课时解决代数问题教案新版 人教版

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎21.3 实际问题与一元二次方程 第1课时 解决代数问题 ‎1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.‎ ‎2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.‎ ‎3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.‎ 重点 利用一元二次方程解决传播问题、百分率问题.‎ 难点 如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.‎ 一、引入新课 ‎1.列方程解应用题的基本步骤有哪些?应注意什么?‎ ‎2.科学家在细胞研究过程中发现:‎ ‎(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?‎ ‎(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?‎ ‎(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?‎ 二、教学活动 活动1:自学教材第19页探究1,思考教师所提问题.‎ 有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?‎ ‎(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.‎ ‎(2)本题中有哪些数量关系?‎ ‎(3)如何利用已知的数量关系选取未知数并列出方程?‎ 解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:‎ ‎1+x+x(1+x)=121‎ 解方程得x1=10,x2=-12(不合题意舍去)‎ 因此每轮传染中平均一个人传染了10个人.‎ 变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?‎ 活动2:自学教材第19页~第20页探究2,思考老师所提问题.‎ 两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?‎ 2‎ ‎(1)如何理解年平均下降额与年平均下降率?它们相等吗?‎ ‎(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.‎ ‎(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);‎ 二月(或二年)后产量为a(1±x)2;‎ n月(或n年)后产量为a(1±x)n;‎ 如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.‎ ‎(4)对甲种药品而言根据等量关系列方程为:________________.‎ 三、课堂小结与作业布置 课堂小结 ‎1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.‎ ‎2.传播问题解决的关键是传播源的确定和等量关系的建立.‎ ‎3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).‎ ‎4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.‎ 作业布置 教材第21-22页 习题21.3第2-7题.‎ 2‎